Piao Sixuan, He Donglan
Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Science, South-Central Minzu University, Wuhan 430074, China.
Microorganisms. 2022 Aug 13;10(8):1643. doi: 10.3390/microorganisms10081643.
Titanium dioxide nanoparticle (TiO NP) toxicity to the growth of organisms has been gradually clarified; however, its effects on microorganism-mediated phosphorus turnover are poorly understood. To evaluate the influences of TiO NPs on phosphorus fractionation and the bacterial community, aquatic microorganisms were exposed to different concentrations of TiO NPs with different exposure times (i.e., 0, 10, and 30 days). We observed the adhesion of TiO NPs to the cell surfaces of planktonic microbes by using SEM, EDS, and XRD techniques. The addition of TiO NPs resulted in a decrease in the total phosphorus of water and an increase in the total phosphorus of sediments. Additionally, elevated TiO NPs enhanced the sediment activities of reductases (i.e., dehydrogenase [0.19-2.25 μg/d/g] and catalase [1.06-2.92 μmol/d/g]), and significantly decreased the absolute abundances of phosphorus-cycling-related genes (i.e., [1.78 × 10-9.55 × 10 copies/g], [5.50 × 10-5.49 × 10 copies/g], [4.17 × 10-1.58 × 10 copies/g]), and sediment bacterial diversity. TiO NPs could noticeably affect the bacterial community, showing dramatic divergences in relative abundances (e.g., , , and ), coexistence patterns, and functional redundancies (e.g., translation and transcription). Our results emphasized that the TiO NP amount-rather than the exposure time-showed significant effects on phosphorus fractions, enzyme activity, phosphorus-cycling-related gene abundance, and bacterial diversity, whereas the exposure time exhibited a greater influence on the composition and function of the sediment bacterial community than the TiO NP amount. Our findings clarify the responses of phosphorus fractions and the bacterial community to TiO NP exposure in the water-sediment ecosystem and highlight potential environmental risks of the migration of untreated TiO NPs to aquatic ecosystems.
二氧化钛纳米颗粒(TiO NP)对生物体生长的毒性已逐渐明晰;然而,其对微生物介导的磷周转的影响却知之甚少。为评估TiO NPs对磷分级和细菌群落的影响,将水生微生物暴露于不同浓度的TiO NPs中,并设置不同暴露时间(即0、10和30天)。我们使用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)技术观察了TiO NPs在浮游微生物细胞表面的附着情况。添加TiO NPs导致水体总磷减少,沉积物总磷增加。此外,TiO NPs浓度升高增强了还原酶(即脱氢酶[0.19 - 2.25μg/d/g]和过氧化氢酶[1.06 - 2.92μmol/d/g])的沉积物活性,并显著降低了与磷循环相关基因的绝对丰度(即[1.78×10 - 9.55×10拷贝/g]、[5.50×10 - 5.49×10拷贝/g]、[4.17×10 - 1.58×10拷贝/g])以及沉积物细菌多样性。TiO NPs能够显著影响细菌群落,在相对丰度(如、、和)、共存模式以及功能冗余(如翻译和转录)方面表现出显著差异。我们的结果强调,TiO NPs的量而非暴露时间对磷组分、酶活性、与磷循环相关的基因丰度和细菌多样性有显著影响,而暴露时间对沉积物细菌群落的组成和功能的影响大于TiO NPs的量。我们的研究结果阐明了水 - 沉积物生态系统中磷组分和细菌群落对TiO NP暴露的响应,并突出了未经处理的TiO NPs迁移到水生生态系统的潜在环境风险。