Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan.
Free Radic Res. 2021 Apr;55(4):331-342. doi: 10.1080/10715762.2020.1859108. Epub 2020 Dec 18.
Oxidative stress plays a critical role in nanotoxicity. Various types of nanoparticles are known to induce oxidative stress by generating intracellular reactive oxygen species (ROS). Cellular uptake of nanoparticles and intracellular metal ion release are important factors for intracellular ROS generation. Besides, ROS generation can result from interactions of nanoparticles and cells that lead to mitochondrial dysfunction. , nanoparticles induce the secretion of cytokines, which, in turn, induce secondary oxidative stress via generation of ROS and free radicals. However, not all nanoparticles induce oxidative stress. Intracellular ROS generation by nanoparticles depends on their physical and chemical properties, such as the crystalline phase, adsorption ability, and solubility. Even if the particle size is nanoscale (1-100nm), physically and chemically inactive particles do not induce oxidative stress. Thus, the particle size is not a direct influencing factor in nanoparticle-induced oxidative stress.
氧化应激在纳米毒性中起着关键作用。各种类型的纳米颗粒通过产生细胞内活性氧物种(ROS)而诱导氧化应激。纳米颗粒的细胞摄取和细胞内金属离子释放是细胞内 ROS 产生的重要因素。此外,ROS 的产生可能源于纳米颗粒与细胞的相互作用,导致线粒体功能障碍。此外,纳米颗粒诱导细胞因子的分泌,细胞因子通过产生 ROS 和自由基进而诱导二次氧化应激。然而,并非所有的纳米颗粒都会诱导氧化应激。纳米颗粒引起的细胞内 ROS 生成取决于其物理化学性质,如晶相、吸附能力和溶解度。即使颗粒尺寸为纳米级(1-100nm),物理化学上不活跃的颗粒也不会引起氧化应激。因此,颗粒尺寸不是纳米颗粒诱导氧化应激的直接影响因素。