Mikoliunaite Lina, Talaikis Martynas, Michalowska Aleksandra, Dobilas Jorunas, Stankevic Voitech, Kudelski Andrzej, Niaura Gediminas
Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania.
Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania.
Nanomaterials (Basel). 2022 Aug 19;12(16):2860. doi: 10.3390/nano12162860.
Bifunctional magneto-plasmonic nanoparticles that exhibit synergistically magnetic and plasmonic properties are advanced substrates for surface-enhanced Raman spectroscopy (SERS) because of their excellent controllability and improved detection potentiality. In this study, composite magneto-plasmonic nanoparticles (FeO@AgNPs) were formed by mixing colloid solutions of 50 nm-sized magnetite nanoparticles with 13 nm-sized silver nanoparticles. After drying of the layer of composite FeO@AgNPs under a strong magnetic field, they outperformed the conventional silver nanoparticles during SERS measurements in terms of signal intensity, spot-to-spot, and sample-to-sample reproducibility. The SERS enhancement factor of FeO@AgNP-adsorbed 4-mercaptobenzoic acid (4-MBA) was estimated to be 3.1 × 10 for a 633 nm excitation. In addition, we show that simply by changing the initial volumes of the colloid solutions, it is possible to control the average density of the silver nanoparticles, which are attached to a single magnetite nanoparticle. UV-Vis and SERS data revealed a possibility to tune the plasmonic resonance frequency of FeO@AgNPs. In this research, the plasmon resonance maximum varied from 470 to 800 nm, suggesting the possibility to choose the most suitable nanoparticle composition for the particular SERS experiment design. We emphasize the increased thermal stability of composite nanoparticles under 532 and 442 nm laser light irradiation compared to that of bare FeO nanoparticles. The FeO@AgNPs were further characterized by XRD, TEM, and magnetization measurements.
具有协同磁性能和等离子体性能的双功能磁等离子体纳米颗粒,因其出色的可控性和改进的检测潜力,是表面增强拉曼光谱(SERS)的先进基底。在本研究中,通过将50 nm大小的磁铁矿纳米颗粒的胶体溶液与13 nm大小的银纳米颗粒混合,形成了复合磁等离子体纳米颗粒(FeO@AgNPs)。在强磁场下干燥复合FeO@AgNPs层后,它们在SERS测量中,在信号强度、点与点以及样品与样品的重现性方面均优于传统银纳米颗粒。对于633 nm激发光,吸附4-巯基苯甲酸(4-MBA)的FeO@AgNP的SERS增强因子估计为3.1×10。此外,我们表明,只需改变胶体溶液的初始体积,就有可能控制附着在单个磁铁矿纳米颗粒上的银纳米颗粒的平均密度。紫外-可见光谱和SERS数据揭示了调节FeO@AgNPs等离子体共振频率的可能性。在本研究中,等离子体共振最大值在470至800 nm之间变化,这表明有可能为特定的SERS实验设计选择最合适的纳米颗粒组成。我们强调,与裸FeO纳米颗粒相比,复合纳米颗粒在532和442 nm激光照射下具有更高的热稳定性。通过X射线衍射、透射电子显微镜和磁化测量对FeO@AgNPs进行了进一步表征。