Kádár Szabina, Csicsák Dóra, Tőzsér Petra, Farkas Attila, Pálla Tamás, Mirzahosseini Arash, Tóth Blanka, Tóth Gergő, Fiser Béla, Horváth Péter, Madarász János, Avdeef Alex, Takács-Novák Krisztina, Sinkó Bálint, Borbás Enikő, Völgyi Gergely
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 3 Műegyetem rkp., 1111 Budapest, Hungary.
Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, 1092 Budapest, Hungary.
Pharmaceutics. 2022 Aug 5;14(8):1635. doi: 10.3390/pharmaceutics14081635.
Creating supersaturating drug delivery systems to overcome the poor aqueous solubility of active ingredients became a frequent choice for formulation scientists. Supersaturation as a solution phenomenon is, however, still challenging to understand, and therefore many recent publications focus on this topic. This work aimed to investigate and better understand the pH dependence of supersaturation of telmisartan (TEL) at a molecular level and find a connection between the physicochemical properties of the active pharmaceutical ingredient (API) and the ability to form supersaturated solutions of the API. Therefore, the main focus of the work was the pH-dependent thermodynamic and kinetic solubility of the model API, TEL. Based on kinetic solubility results, TEL was observed to form a supersaturated solution only in the pH range 3-8. The experimental thermodynamic solubility-pH profile shows a slight deviation from the theoretical Henderson-Hasselbalch curve, which indicates the presence of zwitterionic aggregates in the solution. Based on p values and the refined solubility constants and distribution of macrospecies, the pH range where high supersaturation-capacity is observed is the same where the zwitterionic form of TEL is present. The existence of zwitterionic aggregation was confirmed experimentally in the pH range of 3 to 8 by mass spectrometry.
创建过饱和药物递送系统以克服活性成分水溶性差的问题,已成为制剂科学家们经常采用的选择。然而,过饱和作为一种溶液现象,目前仍难以理解,因此近期许多出版物都聚焦于这一主题。本研究旨在从分子层面探究并更好地理解替米沙坦(TEL)过饱和的pH依赖性,并找出活性药物成分(API)的物理化学性质与形成API过饱和溶液能力之间的联系。因此,本研究的主要重点是模型API替米沙坦的pH依赖性热力学和动力学溶解度。基于动力学溶解度结果,观察到替米沙坦仅在pH值为3至8的范围内形成过饱和溶液。实验得到的热力学溶解度-pH曲线与理论亨德森-哈塞尔巴尔赫曲线略有偏差,这表明溶液中存在两性离子聚集体。基于p值以及精制的溶解度常数和宏观物种分布,观察到高过饱和能力的pH范围与替米沙坦两性离子形式存在的范围相同。通过质谱法在3至8的pH范围内实验证实了两性离子聚集体的存在。