Department of Health Science, Gachon University Graduate School, Gachon University, Incheon 21936, Korea.
Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea.
Sensors (Basel). 2022 Aug 18;22(16):6191. doi: 10.3390/s22166191.
The diagnosis of small vessel disease is attracting interest; however, it remains difficult to visualize the microvasculature using 3 Tesla (T) magnetic resonance imaging (MRI). Therefore, this study aimed to visualize the microvascular structure and measure a slow flow on 3T MRI. We developed a microcirculation system using piezoelectric pumps connected to small tubes (0.4, 0.5, 0.8, and 1.0 mm) and evaluated various MR sequences and imaging parameters to identify the most appropriate acquisition parameters. We found that the system could image small structures with a diameter of 0.5 mm or more when using a 1 m-long tube (maximal signal intensity of 241 in 1 mm, 199 in 0.8 mm, and 133 in 0.5 mm). We also found that the highest signal-to-noise ratio (SNR) appeared on 2-dimensional time-of-flight low-resolution imaging and that the flow velocity (10.03 cm/s) was similar to the actual velocity (11.01 cm/s in a flowmeter) when velocity encoding of 30 cm/s was used in a 0.8 mm-diameter tube. In conclusion, this study demonstrates that a microcirculation system can be used to image small vessels. Therefore, our results could serve as a basis for research on vessels' anatomical structure and pathophysiological function in small vessel disease.
小血管疾病的诊断正引起人们的兴趣;然而,使用 3 特斯拉(T)磁共振成像(MRI)仍然难以可视化微血管。因此,本研究旨在使用 3T MRI 可视化微血管结构并测量缓慢血流。我们使用连接到小管子(0.4、0.5、0.8 和 1.0 毫米)的压电泵开发了一个微循环系统,并评估了各种磁共振序列和成像参数,以确定最合适的采集参数。我们发现,当使用 1 米长的管子时,该系统可以对直径为 0.5 毫米或更大的小结构进行成像(在 1 毫米处的最大信号强度为 241,在 0.8 毫米处为 199,在 0.5 毫米处为 133)。我们还发现,二维时间飞跃低分辨率成像的信噪比(SNR)最高,当在 0.8 毫米直径的管子中使用 30cm/s 的速度编码时,流速(10.03cm/s)与实际流速(流量计中的 11.01cm/s)相似。总之,本研究表明,微循环系统可用于成像小血管。因此,我们的结果可以为小血管疾病中血管解剖结构和病理生理功能的研究提供基础。