Center for Computational Biology, University of Kansas, Lawrence, Kansas; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California.
Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas; Department of Integrative Biology and Physiology, UCLA, Los Angeles, California.
Biophys J. 2022 Oct 18;121(20):3975-3986. doi: 10.1016/j.bpj.2022.08.022. Epub 2022 Aug 25.
The 20S proteasome core particle (CP) is a molecular machine that is a key component of cellular protein degradation pathways. Like other molecular machines, it is not synthesized in an active form but rather as a set of subunits that assemble into a functional complex. The CP is conserved across all domains of life and is composed of 28 subunits, 14 α and 14 β, arranged in four stacked seven-member rings (αββα). While details of CP assembly vary across species, the final step in the assembly process is universally conserved: two half proteasomes (HPs; αβ) dimerize to form the CP. In the bacterium Rhodococcus erythropolis, experiments have shown that the formation of the HP is completed within minutes, while the dimerization process takes hours. The N-terminal propeptide of the β subunit, which is autocatalytically cleaved off after CP formation, plays a key role in regulating this separation of timescales. However, the detailed molecular mechanism of how the propeptide achieves this regulation is unclear. In this work, we used molecular dynamics simulations to characterize HP conformations and found that the HP exists in two states: one where the propeptide interacts with key residues in the HP dimerization interface and likely blocks dimerization, and one where this interface is free. Furthermore, we found that a propeptide mutant that dimerizes extremely slowly is essentially always in the nondimerizable state, while the wild-type rapidly transitions between the two. Based on these simulations, we designed a propeptide mutant that favored the dimerizable state in molecular dynamics simulations. In vitro assembly experiments confirmed that this mutant dimerizes significantly faster than wild-type. Our work thus provides unprecedented insight into how this critical step in CP assembly is regulated, with implications both for efforts to inhibit proteasome assembly and for the evolution of hierarchical assembly pathways.
20S 蛋白酶体核心颗粒 (CP) 是一种分子机器,是细胞蛋白降解途径的关键组成部分。与其他分子机器一样,它不是以活性形式合成的,而是作为一组亚基组装成一个功能复合物。CP 在所有生命领域都保守存在,由 28 个亚基组成,14 个α和 14 个β,排列在四个堆叠的七元环 (αββα) 中。虽然 CP 组装在不同物种之间存在差异,但组装过程的最后一步在所有物种中都是保守的:两个半蛋白酶体 (HP; αβ) 二聚化形成 CP。在细菌 Rhodococcus erythropolis 中,实验表明 HP 的形成在几分钟内完成,而二聚化过程需要数小时。β亚基的 N 端前肽在 CP 形成后被自动切割,在调节这种时间尺度的分离中起着关键作用。然而,前肽如何实现这种调节的详细分子机制尚不清楚。在这项工作中,我们使用分子动力学模拟来描绘 HP 构象,发现 HP 存在两种状态:一种是前肽与 HP 二聚化界面的关键残基相互作用,可能阻止二聚化,另一种是该界面是自由的。此外,我们发现一个二聚化非常缓慢的前肽突变体基本上总是处于不可二聚化的状态,而野生型则在两者之间快速转换。基于这些模拟,我们设计了一个在分子动力学模拟中有利于二聚化状态的前肽突变体。体外组装实验证实,该突变体的二聚化速度明显快于野生型。因此,我们的工作提供了对 CP 组装这一关键步骤如何受到调节的前所未有的深入了解,这对抑制蛋白酶体组装的努力和分层组装途径的进化都有影响。