Suppr超能文献

无序蛋白产生空间压力和重塑膜的分子机制。

Molecular mechanisms of steric pressure generation and membrane remodeling by disordered proteins.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.

Department of Chemistry, Seoul National University of Science and Technology, Seoul, South Korea.

出版信息

Biophys J. 2022 Sep 20;121(18):3320-3333. doi: 10.1016/j.bpj.2022.08.028. Epub 2022 Aug 25.

Abstract

Cellular membranes, which are densely crowded by proteins, take on an elaborate array of highly curved shapes. Steric pressure generated by protein crowding plays a significant role in shaping membrane surfaces. It is increasingly clear that many proteins involved in membrane remodeling contain substantial regions of intrinsic disorder. These domains have large hydrodynamic radii, suggesting that they may contribute significantly to steric congestion on membrane surfaces. However, it has been unclear to what extent they are capable of generating steric pressure, owing to their conformational flexibility. To address this gap, we use a recently developed sensor based on Förster resonance energy transfer to measure steric pressure generated at membrane surfaces by the intrinsically disordered domain of the endocytic protein, AP180. We find that disordered domains generate substantial steric pressure that arises from both entropic and electrostatic components. Interestingly, this steric pressure is largely invariant with the molecular weight of the disordered domain, provided that coverage of the membrane surface is held constant. Moreover, equivalent levels of steric pressure result in equivalent degrees of membrane remodeling, regardless of protein molecular weight. This result, which is consistent with classical polymer scaling relationships for semi-dilute solutions, helps to explain the molecular and physical origins of steric pressure generation by intrinsically disordered domains. From a physiological perspective, these findings suggest that a broad range of membrane-associated disordered domains are likely to play a significant and previously unknown role in controlling membrane shape.

摘要

细胞膜中蛋白质高度拥挤,呈现出复杂的高度弯曲形状。蛋白质拥挤产生的空间位阻压力在塑造膜表面形状方面发挥着重要作用。越来越多的证据表明,许多参与膜重塑的蛋白质含有大量的固有无序区域。这些结构域具有较大的流体力学半径,表明它们可能会对膜表面的空间位阻产生显著影响。然而,由于它们的构象灵活性,这些无序区域在多大程度上能够产生空间位阻压力尚不清楚。为了解决这一差距,我们使用了一种基于Förster 共振能量转移的新型传感器,来测量内吞蛋白 AP180 的无序结构域在膜表面产生的空间位阻压力。我们发现,无序结构域会产生大量的空间位阻压力,这主要来源于熵和静电两种成分。有趣的是,只要保持膜表面的覆盖率不变,这种空间位阻压力与无序结构域的分子量基本无关。此外,无论蛋白质分子量如何,等效水平的空间位阻压力都会导致等效程度的膜重塑。这一结果与半稀溶液中经典聚合物标度关系一致,有助于解释无序结构域产生空间位阻压力的分子和物理起源。从生理学的角度来看,这些发现表明,广泛存在于膜相关的无序结构域可能在控制膜形状方面发挥着重要的、以前未知的作用。

相似文献

4
BAR scaffolds drive membrane fission by crowding disordered domains.BAR 支架通过拥挤无序结构域来驱动膜裂变。
J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30.
6
Membrane fission by protein crowding.蛋白质拥挤导致的膜裂变。
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3258-E3267. doi: 10.1073/pnas.1616199114. Epub 2017 Apr 3.
9
Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein.无序蛋白感知膜曲率的分子机制。
J Am Chem Soc. 2019 Jul 3;141(26):10361-10371. doi: 10.1021/jacs.9b03927. Epub 2019 Jun 20.

引用本文的文献

1
Biophysical modeling of membrane curvature generation and curvature sensing by the glycocalyx.糖萼产生膜曲率和感知曲率的生物物理建模。
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2418357122. doi: 10.1073/pnas.2418357122. Epub 2025 Feb 19.
3
Protein-membrane interactions: sensing and generating curvature.蛋白质-膜相互作用:感应和产生曲率。
Trends Biochem Sci. 2024 May;49(5):401-416. doi: 10.1016/j.tibs.2024.02.005. Epub 2024 Mar 19.
5
Bio-enabled Engineering of Multifunctional "Living" Surfaces.生物启发的多功能“活”表面工程。
ACS Nano. 2023 Jun 27;17(12):11077-11086. doi: 10.1021/acsnano.3c03138. Epub 2023 Jun 9.
6
Membranes in focus.聚焦膜。
Biophys J. 2023 Jun 6;122(11):E1-E4. doi: 10.1016/j.bpj.2023.05.005. Epub 2023 May 19.

本文引用的文献

2
Principles and Applications of Biological Membrane Organization.生物膜组织的原理与应用。
Annu Rev Biophys. 2020 May 6;49:19-39. doi: 10.1146/annurev-biophys-121219-081637. Epub 2020 Jan 8.
3
Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein.无序蛋白感知膜曲率的分子机制。
J Am Chem Soc. 2019 Jul 3;141(26):10361-10371. doi: 10.1021/jacs.9b03927. Epub 2019 Jun 20.
4
Physical Principles of Membrane Shape Regulation by the Glycocalyx.糖萼调控细胞膜形状的物理原理。
Cell. 2019 Jun 13;177(7):1757-1770.e21. doi: 10.1016/j.cell.2019.04.017. Epub 2019 May 2.
6
BAR scaffolds drive membrane fission by crowding disordered domains.BAR 支架通过拥挤无序结构域来驱动膜裂变。
J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30.
8
Membrane fission by protein crowding.蛋白质拥挤导致的膜裂变。
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3258-E3267. doi: 10.1073/pnas.1616199114. Epub 2017 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验