Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Cell. 2019 Jun 13;177(7):1757-1770.e21. doi: 10.1016/j.cell.2019.04.017. Epub 2019 May 2.
Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.
细胞通过将质膜弯曲成高度弯曲的形状来与局部环境相互作用,但形状生成如何受到调节还没有完全解决。在这里,我们报告了细胞内部的形状生成过程与细胞表面糖萼的外部组织和组成之间的协同作用。糖萼中的粘蛋白生物聚合物和长链多糖可以产生有利于或不利于球形和指状突起从细胞表面突出的熵力。糖萼的聚合物刷模型成功预测了聚合物尺寸和细胞表面密度对膜形态的影响。特定的糖萼组成还可以诱导质膜不稳定性,产生更奇特的波动和珠状膜结构,并驱动细胞外囊泡的分泌。总之,我们的研究结果表明,糖萼在调节弯曲膜特征方面起着基础性作用,这些特征在细胞之间以及与细胞外基质的通讯中发挥作用。