Suppr超能文献

第1天中性粒细胞与淋巴细胞比值(NLR)可预测静脉溶栓和机械取栓后的卒中预后。

Day 1 neutrophil-to-lymphocyte ratio (NLR) predicts stroke outcome after intravenous thrombolysis and mechanical thrombectomy.

作者信息

Chen Siyan, Cheng Jianhua, Ye Qiang, Ye Zusen, Zhang Yanlei, Liu Yuntao, Huang Guiqian, Chen Feichi, Yang Ming, Wang Chuanliu, Duan Tingting, Liu Xiang, Zhang Zheng

机构信息

Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China.

Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.

出版信息

Front Neurol. 2022 Aug 9;13:941251. doi: 10.3389/fneur.2022.941251. eCollection 2022.

Abstract

BACKGROUND

The neutrophil-to-lymphocyte ratio (NLR) is a biomarker reflecting the balance between inflammation (as indicated by the neutrophil count) and adaptive immunity (as indicated by the lymphocyte count). We aimed to estimate ability of NLR at admission and at day 1 for predicting stroke outcome after two reperfusion therapies: intravenous thrombolysis (IVT) and mechanical thrombectomy (MT).

METHODS

A retrospective analysis was performed on patients who received recombinant human tissue plasminogen activator (IVT) and/or underwent MT for acute ischemic stroke (AIS) at the First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China) from January 2018 to December 2020. Blood samples were taken on admission to hospital and on day 1 after stroke onset. Binary logistic regression models were applied to investigate potential associations between NLR at admission or day 1 and the following outcomes: symptomatic intracerebral hemorrhage (sICH), dependence, and mortality at 90 days. The ability of NLR to predict AIS outcome was analyzed using receiver operating characteristic (ROC) curves.

RESULTS

Data for 927 patients (576 IVT and 351 MT) were reviewed. High admission NLR was associated with dependence in IVT treatment [adjusted odds ratio (OR) 1.21, 95% confidence interval (CI) 1.14-1.23] and 90-day mortality in MT patients (OR 1.09, 95% CI 1.04-1.13). In IVT patients, high NLR at day 1 predicted dependence (OR 1.09, 95% CI 1.02-1.11), sICH (OR = 1.07, 95% CI 1.01-1.12), and 90-day mortality (OR 1.06, 95% CI 1.01-1.15). In MT patients, high NLR at day 1 also predicted dependence (OR 1.08, 95% CI 1.02-1.11) and sICH (OR 1.03, 95% CI 1.01-1.09). ROC analysis confirmed that NLR at day 1 could predict dependence (cut-off 4.2; sensitivity 68.7%; specificity 79.6%), sICH (cut-off 5.1; sensitivity 57.9%, specificity 73.5%), and death (cut-off 5.4; sensitivity 78.8%; specificity 76.4%) in IVT patients. Z values of area under the curves were compared between admissioin and day 1 NLR in IVT patients and showed day 1 NLR can better predict dependence ( = 2.8, = 0.004) and 90-day death ( = 2.8, = 0.005).

CONCLUSIONS

NLR is a readily available biomarker that can predict AIS outcome after reperfusion treatment and day 1 NLR is even better than admission NLR.

摘要

背景

中性粒细胞与淋巴细胞比值(NLR)是一种反映炎症(以中性粒细胞计数表示)和适应性免疫(以淋巴细胞计数表示)之间平衡的生物标志物。我们旨在评估入院时和第1天时NLR对两种再灌注治疗(静脉溶栓[IVT]和机械取栓[MT])后卒中结局的预测能力。

方法

对2018年1月至2020年12月在温州医科大学附属第一医院(中国温州)接受重组人组织型纤溶酶原激活剂(IVT)和/或接受MT治疗急性缺血性卒中(AIS)的患者进行回顾性分析。在入院时和卒中发作后第1天采集血样。应用二元逻辑回归模型研究入院时或第1天时NLR与以下结局之间的潜在关联:症状性脑出血(sICH)、依赖和90天时的死亡率。使用受试者工作特征(ROC)曲线分析NLR预测AIS结局的能力。

结果

回顾了927例患者的数据(576例IVT和351例MT)。入院时NLR升高与IVT治疗中的依赖相关(调整后的优势比[OR]为1.21,95%置信区间[CI]为1.14 - 1.23)以及MT患者90天死亡率相关(OR为1.09,95% CI为1.04 - 1.13)。在IVT患者中,第1天时NLR升高预测依赖(OR为1.09,95% CI为1.02 - 1.11)、sICH(OR = 1.07,95% CI为1.01 - 1.12)和90天死亡率(OR为1.06,95% CI为1.01 - 1.15)。在MT患者中,第1天时NLR升高也预测依赖(OR为1.08,95% CI为1.02 - 1.11)和sICH(OR为1.03,95% CI为1.01 - 1.09)。ROC分析证实,第1天时NLR可预测IVT患者的依赖(临界值4.2;敏感性68.7%;特异性79.6%)、sICH(临界值5.1;敏感性57.9%,特异性73.5%)和死亡(临界值5.4;敏感性78.8%;特异性76.4%)。比较了IVT患者入院时和第1天时NLR曲线下面积的Z值,结果显示第1天时NLR能更好地预测依赖(Z = 2.8,P = 0.004)和90天死亡(Z = 2.8,P = 0.005)。

结论

NLR是一种易于获得的生物标志物,可预测再灌注治疗后的AIS结局,且第1天时的NLR比入院时的NLR预测效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/749e/9396211/127d2e38c877/fneur-13-941251-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验