Suppr超能文献

拉曼光谱和荧光显微光谱法用于监测心肌细胞中载有舒尼替尼的多孔硅纳米容器。

Raman and fluorescence micro-spectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells.

作者信息

Tolstik E, Gongalsky M B, Dierks J, Brand T, Pernecker M, Pervushin N V, Maksutova D E, Gonchar K A, Samsonova J V, Kopeina G, Sivakov V, Osminkina L A, Lorenz K

机构信息

Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.

Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia.

出版信息

Front Pharmacol. 2022 Aug 9;13:962763. doi: 10.3389/fphar.2022.962763. eCollection 2022.

Abstract

Nanomaterials are a central pillar in modern medicine. They are thought to optimize drug delivery, enhance therapeutic efficacy, and reduce side-effects. To foster this technology, analytical methods are needed to validate not only the localization and distribution of these nanomaterials, but also their compatibility with cells, drugs, and drug release. In the present work, we assessed nanoparticles based on porous silicon (pSiNPs) loaded with the clinically used tyrosine kinase inhibitor sunitinib for their effectiveness of drug delivery, release, and toxicity in colon cancer cells (HCT 116 cells) and cardiac myoblast cells (H9c2) using Raman micro-spectroscopy, high-resolution fluorescence microscopy, along with biological methods for toxicological effects. We produced pSiNPs with a size of about 100 nm by grinding mesoporous silicon layers. pSiNPs allowed an effective loading of sunitinib due to their high porosity. Photoluminescence properties of the nanoparticles within the visible spectrum allowed the visualization of their uptake in cardiac cells. Raman micro-spectroscopy allowed not only the detection of the uptake and distribution of pSiNPs within the cells via a characteristic silicon Raman band at about 518-520 cm, but also the localization of the drug based on its characteristic molecular fingerprints. Cytotoxicity studies by Western blot analyses of apoptotic marker proteins such as caspase-3, and the detection of apoptosis by subG1-positive cell fractions in HCT 116 and MTT analyses in H9c2 cells, suggest a sustained release of sunitinib from pSiNPs and delayed cytotoxicity of sunitinib in HCT 116 cells. The analyses in cardiac cells revealed that pSiNPs are well tolerated and that they may even protect from toxic effects in these cells to some extent. Analyses of the integrity of mitochondrial networks as an early indicator for apoptotic cellular effects seem to validate these observations. Our study suggests pSiNPs-based nanocontainers for efficient and safe drug delivery and Raman micro-spectroscopy as a reliable method for their detection and monitoring. Thus, the herein presented nanocontainers and analytical methods have the potential to allow an efficient advancement of nanoparticles for targeted and sustained intracellular drug release that is of need, e.g., in chronic diseases and for the prevention of cardiac toxicity.

摘要

纳米材料是现代医学的核心支柱。人们认为它们能优化药物递送、提高治疗效果并减少副作用。为了推动这项技术的发展,需要分析方法来验证这些纳米材料的定位和分布,以及它们与细胞、药物和药物释放的兼容性。在本研究中,我们使用拉曼显微光谱、高分辨率荧光显微镜以及毒理学效应的生物学方法,评估了负载临床使用的酪氨酸激酶抑制剂舒尼替尼的多孔硅纳米颗粒(pSiNPs)在结肠癌细胞(HCT 116细胞)和心肌成纤维细胞(H9c2)中的药物递送、释放及毒性效果。我们通过研磨介孔硅层制备了尺寸约为100纳米的pSiNPs。由于其高孔隙率,pSiNPs能够有效负载舒尼替尼。纳米颗粒在可见光谱范围内的光致发光特性使得它们在心脏细胞中的摄取情况得以可视化。拉曼显微光谱不仅能够通过约518 - 520厘米处的特征硅拉曼带检测pSiNPs在细胞内的摄取和分布,还能基于药物的特征分子指纹确定药物的定位。通过对凋亡标记蛋白如半胱天冬酶 - 3进行蛋白质印迹分析的细胞毒性研究,以及通过HCT 116细胞中G1期以下阳性细胞分数检测凋亡和H9c2细胞中的MTT分析,表明舒尼替尼从pSiNPs中持续释放,且在HCT 116细胞中舒尼替尼的细胞毒性延迟。对心脏细胞的分析表明,pSiNPs耐受性良好,甚至在一定程度上可能对这些细胞起到保护作用,使其免受毒性影响。将线粒体网络完整性作为细胞凋亡早期指标的分析似乎证实了这些观察结果。我们的研究表明,基于pSiNPs的纳米容器可实现高效安全的药物递送,拉曼显微光谱是检测和监测它们的可靠方法。因此,本文介绍的纳米容器和分析方法有可能推动纳米颗粒在靶向和持续细胞内药物释放方面的高效发展,这在慢性疾病以及预防心脏毒性方面尤为必要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ff/9397571/278f9e354580/fphar-13-962763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验