Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China), College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
J Mater Chem B. 2020 Jan 22;8(3):546-557. doi: 10.1039/c9tb02340b.
The development of drug delivery systems based on external stimuli-responsive nanocarriers is important to overcome multidrug resistance in breast cancer cells. Herein, iron oxide/gold (Fe3O4/Au) nanoparticles were first fabricated via a simple hydrothermal reaction, and subsequently loaded into porous silicon nanoparticles (PSiNPs) via electrostatic interactions to construct PSiNPs@(Fe3O4/Au) nanocomposites. The as-prepared PSiNPs@(Fe3O4/Au) nanocomposites exhibited excellent super-paramagnetism, photothermal effect, and T2-weight magnetic resonance imaging capability. In particular, with the help of a magnetic field, the cellular uptake of PSiNPs@(Fe3O4/Au) nanocomposites was significantly enhanced in drug-resistant breast cancer cells. Moreover, PSiNPs@(Fe3O4/Au) nanocomposites as carriers showed a high loading and NIR light-triggered release of anticancer drugs. Based on the synergistic effect of magnetic field-enhanced cellular uptake and NIR light-triggered intracellular release, the amount of anticancer drug carried by PSiNPs@(Fe3O4/Au) nanocarriers into the nuclei of drug-resistant breast cancer cells sharply increased, accompanied by improved chemo-photothermal therapeutic efficacy. Finally, PSiNPs@(Fe3O4/Au) nanocomposites under the combined conditions of magnetic field attraction and NIR light irradiation also showed improved anticancer drug penetration and accumulation in three-dimensional multicellular spheroids composed of drug-resistant breast cancer cells, leading to a better growth inhibition effect. Overall, the fabricated PSiNPs@(Fe3O4/Au) nanocomposites demonstrated great potential for the therapy of multidrug-resistant breast cancer in future.
基于对外界刺激响应的纳米载体的药物传递系统的发展对于克服乳腺癌细胞的多药耐药性至关重要。在此,通过简单的水热反应首次制备了氧化铁/金(Fe3O4/Au)纳米粒子,随后通过静电相互作用将其装载到多孔硅纳米粒子(PSiNPs)中,以构建 PSiNPs@(Fe3O4/Au)纳米复合材料。所制备的 PSiNPs@(Fe3O4/Au)纳米复合材料表现出优异的超顺磁性、光热效应和 T2 加权磁共振成像能力。特别是,在磁场的帮助下,耐药乳腺癌细胞中 PSiNPs@(Fe3O4/Au)纳米复合材料的细胞摄取显著增强。此外,PSiNPs@(Fe3O4/Au)纳米复合材料作为载体表现出高载药量和近红外光触发的抗癌药物释放。基于磁场增强细胞摄取和近红外光触发细胞内释放的协同效应,PSiNPs@(Fe3O4/Au)纳米载体携带的抗癌药物大量进入耐药乳腺癌细胞核内,同时提高了化疗-光热治疗效果。最后,在磁场吸引和近红外光照射的联合作用下,PSiNPs@(Fe3O4/Au)纳米复合材料也表现出改善的抗癌药物在由耐药乳腺癌细胞组成的三维多细胞球体中的穿透和积累,从而导致更好的生长抑制效果。总之,所制备的 PSiNPs@(Fe3O4/Au)纳米复合材料在未来治疗多药耐药性乳腺癌方面具有很大的潜力。