Harris Coleman, Wrobel Julia, Vandekar Simon
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, USA.
J Open Source Softw. 2022;7(71). doi: 10.21105/joss.04180. Epub 2022 Mar 30.
Multiplexed imaging is an emerging single-cell assay that can be used to understand and analyze complex processes in tissue-based cancers, autoimmune disorders, and more. These imaging technologies, which include co-detection by indexing (CODEX), multiplexed ion beam imaging (MIBI), and multiplexed immunofluorescence imaging (MxIF), provide detailed information about spatial interactions between cells (Angelo et al., 2014; Gerdes et al., 2013; Goltsev et al., 2018). Multiplexed imaging experiments generate data across hundreds of slides and images, often resulting in terabytes of complex data to analyze through imaging analysis pipelines. Methods are rapidly developing to improve particular parts of the pipeline, including software packages in R and Python like spatialTime, imcRtools, MCMICR0, and Squidpy (Creed et al., 2021; Palla et al., 2021; Schapiro et al., 2021; Windhager et al., 2021). An important, but understudied component of this pipeline is the analysis of technical variation within this complex data source - intensity normalization is one way to remove this technical variability. The combination of disparate pre-processing pipelines, imaging variables, optical effects, and within-slide dependencies create batch and slide effects that can be reduced via normalization methods. Current state-of-the-art methods vary heavily across research labs and image acquisition platforms, without one singular method that is uniformly robust - optimal statistical methods seek to improve similarity across images and slides by removing this technical variability while maintaining the underlying biological signal in the data. mxnorm is open-source software built with R and S3 methods that implements, evaluates, and visualizes normalization techniques for multiplexed imaging data. Extending methodology described in Harris et al. (2022), we intend to set a foundation for the evaluation of multiplexed imaging normalization methods in R. This easily allows users to extend normalization methods into the field, and provides a robust evaluation framework to measure both technical variability and the efficacy of various normalization methods. One key component of the R package is the ability to supply user-defined normalization methods and thresholding algorithms to assess normalization in multiplexed imaging data. Core features, usage details, and extensive tutorials are available in the package documentation and vignette on CRAN and the software repository.
多重成像技术是一种新兴的单细胞分析方法,可用于了解和分析基于组织的癌症、自身免疫性疾病等复杂过程。这些成像技术包括索引编码联合检测(CODEX)、多重离子束成像(MIBI)和多重免疫荧光成像(MxIF),能够提供有关细胞间空间相互作用的详细信息(安杰洛等人,2014年;格德斯等人,2013年;戈尔采夫等人,2018年)。多重成像实验会生成数百张载玻片和图像的数据,通常会产生数TB的复杂数据,需要通过成像分析流程进行分析。目前正在迅速开发各种方法来改进流程的特定部分,包括R和Python中的软件包,如spatialTime、imcRtools、MCMICR0和Squidpy(克里德等人,2021年;帕拉等人,2021年;夏皮罗等人,2021年;温德哈格等人,2021年)。该流程中一个重要但研究不足的部分是对这个复杂数据源中的技术变化进行分析——强度归一化是消除这种技术变异性的一种方法。不同的预处理流程、成像变量、光学效应以及载玻片内的依赖性共同产生了批次效应和载玻片效应,可通过归一化方法来减少这些效应。当前的先进方法在各个研究实验室和图像采集平台之间差异很大,没有一种单一方法能始终保持稳健——最优统计方法旨在通过消除这种技术变异性,同时保留数据中的潜在生物信号,来提高图像和载玻片之间的相似性。mxnorm是使用R和S3方法构建的开源软件,用于实现、评估和可视化多重成像数据的归一化技术。我们扩展了哈里斯等人(2022年)描述的方法,旨在为评估R中的多重成像归一化方法奠定基础。这使得用户能够轻松地将归一化方法扩展到该领域,并提供一个强大的评估框架,以测量技术变异性和各种归一化方法的效果。R包的一个关键组件是能够提供用户定义的归一化方法和阈值算法,以评估多重成像数据中的归一化情况。核心功能、使用细节以及详细教程可在CRAN和软件仓库中的包文档及小插图中获取。