CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
ACS Nano. 2022 Sep 27;16(9):14982-14999. doi: 10.1021/acsnano.2c06026. Epub 2022 Aug 26.
Immunotherapeutic efficacy of tumors based on immune checkpoint blockade (ICB) therapy is frequently limited by an immunosuppressive tumor microenvironment and cross-reactivity with normal tissues. Herein, we develop reactive oxygen species (ROS)-responsive nanocomplexes with the function of ROS production for delivery and triggered release of anti-mouse programmed death ligand 1 antibody (αPDL1) and glucose oxidase (GOx). GOx and αPDL1 were complexed with oligomerized (-)-epigallocatechin-3--gallate (OEGCG), which was followed by chelation with Fe and coverage of the ROS-responsive block copolymer, POEGMA--PTKDOPA, consisting of poly(oligo(ethylene glycol)methacrylate) (POEGMA) and the block with thioketal bond-linked dopamine moieties (PTKDOPA) as the side chains. After intravenous injection, the nanocomplexes show prolonged circulation in the bloodstream with a half-life of 8.72 h and efficient tumor accumulation. At the tumor sites, GOx inside the nanocomplexes can produce HO via oxidation of glucose for Fenton reaction to generate hydroxyl radicals (•OH) which further trigger the release of the protein cargos through ROS-responsive cleavage of thioketal bonds. The released GOx improves the production efficiency of •OH to kill cancer cells for release of tumor-associated antigens via chemodynamic therapy (CDT). The enhanced immunogenic cell death (ICD) can activate the immunosuppressive tumor microenvironment and improve the immunotherapy effect of the released αPDL1, which significantly suppresses primary and metastatic tumors. Thus, the nanocomplexes with Fenton reaction-triggered protein release show great potentials to improve the immunotherapeutic efficacy of ICB via combination with CDT.
基于免疫检查点阻断 (ICB) 疗法的肿瘤免疫治疗效果常常受到免疫抑制性肿瘤微环境和与正常组织交叉反应的限制。在此,我们开发了具有产生活性氧 (ROS) 功能的 ROS 响应性纳米复合物,用于递送和触发抗小鼠程序性死亡配体 1 抗体 (αPDL1) 和葡萄糖氧化酶 (GOx) 的释放。GOx 和 αPDL1 与齐聚 (-)-表没食子儿茶素-3--没食子酸酯 (OEGCG) 复合,随后与 Fe 螯合,并覆盖具有硫代缩醛键连接的多巴胺部分 (PTKDOPA) 的 ROS 响应性嵌段共聚物 POEGMA--PTKDOPA,由聚(寡聚(乙二醇)甲基丙烯酸酯)(POEGMA)和具有硫代缩醛键连接的多巴胺部分(PTKDOPA)作为侧链的嵌段组成。静脉注射后,纳米复合物在血液中表现出延长的循环半衰期为 8.72 h,并具有高效的肿瘤积累。在肿瘤部位,纳米复合物内的 GOx 可以通过氧化葡萄糖产生 HO 来进行芬顿反应,以产生羟基自由基 (•OH),进一步通过 ROS 响应性硫代缩醛键裂解触发蛋白质货物的释放。释放的 GOx 通过化学动力学疗法 (CDT) 提高了杀死癌细胞以释放肿瘤相关抗原的•OH 生成效率。增强的免疫原性细胞死亡 (ICD) 可以激活免疫抑制性肿瘤微环境,并改善释放的 αPDL1 的免疫治疗效果,从而显著抑制原发性和转移性肿瘤。因此,具有芬顿反应触发的蛋白质释放的纳米复合物通过与 CDT 结合显示出极大的潜力来提高 ICB 的免疫治疗效果。