Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
Talanta. 2023 Jan 15;252:123824. doi: 10.1016/j.talanta.2022.123824. Epub 2022 Aug 12.
M represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen M inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many M inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant M with natural extracts and identifying compounds adducted to the residues within the M active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of M. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 M active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.
M 是 SARS-CoV-2 最有前途的药物靶点之一,因为它在病毒多蛋白成熟为功能性蛋白的过程中起着至关重要的作用。高通量筛选(HTS)方法目前用于筛选 M 抑制剂,依赖于对化学数据库和化合物库的搜索,这意味着它们只考虑了以前结构明确和分离的分子。在命中鉴定策略方面的一个重大进展将是建立一种方法,旨在探索未去卷积的化合物混合物,如植物提取物。因此,本研究的目的是建立一个分析平台,能够从复杂的天然基质中提取生物活性分子,即使对基质成分一无所知。所提出的方法从代谢组学步骤开始,旨在注释基质成分的 MW。进一步的代谢组学步骤基于识别那些能够与硫醇形成迈克尔加成物的天然亲电化合物,这是许多 M 抑制剂的一个特殊化学特征,它们通过共价键结合活性位点中的催化 Cys145,从而稳定复合物。最后一步包括用天然提取物孵育重组 M,并通过自上而下的蛋白质组学分析(纳升 LC-HRMS)鉴定与 M 活性位点内残基结合的化合物。数据分析基于两种互补的策略:(i)通过将鉴定为 Cys 迈克尔受体的加合物部分设置为可变修饰,应用靶向搜索;(ii)基于 b 和 y 片段离子,在不考虑加合物的情况下,针对包含 Cys145 的整个加合物肽进行的非靶向方法。该方法建立后,成功地从黄芩的粗提取物中提取了生物活性化合物,黄芩是一种含有儿茶酚样黄酮黄芩苷及其相应苷元黄芩素的中国植物,黄芩苷和黄芩素是 M 的成熟抑制剂。为了探索黄芩苷和黄芩素在 SARS-CoV-2 M 活性位点内的结合模式,进行了分子动力学(MD)模拟,这有助于更好地理解亲核残基(即 His41、Cys145、His163 和 His164)在蛋白-配体识别过程中的作用。