Suppr超能文献

表面活性剂如何展开和重新折叠蛋白质?

How do surfactants unfold and refold proteins?

机构信息

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus C, Denmark.

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.

出版信息

Adv Colloid Interface Sci. 2022 Oct;308:102754. doi: 10.1016/j.cis.2022.102754. Epub 2022 Aug 16.

Abstract

Although the anionic surfactant sodium dodecyl sulfate, SDS, has been used for more than half a century as a versatile and efficient protein denaturant for protein separation and size estimation, there is still controversy about its mode of interaction with proteins. The term "rod-like" structures for the complexes that form between SDS and protein, originally introduced by Tanford, is not sufficiently descriptive and does not distinguish between the two current vying models, namely protein-decorated micelles a.k.a. the core-shell model (in which denatured protein covers the surface of micelles) versus beads-on-a-string model (where unfolded proteins are surrounded by surfactant micelles). Thanks to a combination of structural, kinetic and computational work particularly within the last 5-10 years, it is now possible to rule decisively in favor of the core-shell model. This is supported unambiguously by a combination of calorimetric and small-angle X-ray scattering (SAXS) techniques and confirmed by increasingly sophisticated molecular dynamics simulations. Depending on the SDS:protein ratio and the protein molecular mass, the formed structures can range from multiple partly unfolded protein molecules surrounding a single shared micelle to a single polypeptide chain decorating multiple micelles. We also have much new insight into how this species forms. It is preceded by the binding of small numbers of SDS molecules which subsequently grow by accretion. Time-resolved SAXS analysis reveals an asymmetric attack by SDS micelles followed by distribution of the increasingly unfolded protein around the micelle. The compactness of the protein chain continues to evolve at higher SDS concentrations according to single-molecule studies, though the protein remains completely denatured on the tertiary structural level. SDS denaturation can be reversed by addition of nonionic surfactants that absorb SDS forming mixed micelles, leaving the protein free to refold. Refolding can occur in parallel tracks if only a fraction of the protein is initially stripped of SDS. SDS unfolding is nearly always reversible unless carried out at low pH, where charge neutralization can lead to superclusters of protein-surfactant complexes. With the general mechanism of SDS denaturation now firmly established, it largely remains to explore how other ionic surfactants (including biosurfactants) may diverge from this path.

摘要

尽管阴离子表面活性剂十二烷基硫酸钠(SDS)作为一种通用且高效的蛋白质变性剂,已被用于蛋白质分离和大小估计超过半个世纪,但关于 SDS 与蛋白质相互作用的模式仍存在争议。最初由 Tanford 引入的 SDS 与蛋白质形成复合物的“棒状”结构的术语不够描述性,并且不能区分当前两种竞争模型,即蛋白质修饰的胶束,又名核壳模型(其中变性蛋白质覆盖胶束表面)与珠串模型(其中未折叠的蛋白质被表面活性剂胶束包围)。由于结构、动力学和计算工作的综合作用,特别是在过去 5-10 年,现在可以明确支持核壳模型。这一点通过量热法和小角 X 射线散射(SAXS)技术的结合得到了明确的支持,并通过越来越复杂的分子动力学模拟得到了证实。根据 SDS:蛋白质的比例和蛋白质的分子量,形成的结构可以从多个部分展开的蛋白质分子围绕单个共享胶束变化到单个多肽链修饰多个胶束。我们对这种物种的形成方式也有了更多的新见解。它之前是 SDS 分子的少量结合,随后通过 accretion 生长。时间分辨 SAXS 分析揭示了 SDS 胶束的不对称攻击,随后 SDS 胶束将越来越展开的蛋白质分布在胶束周围。根据单分子研究,在更高 SDS 浓度下,蛋白质链的紧凑性继续演变,尽管蛋白质在三级结构水平上仍完全变性。通过添加吸收 SDS 形成混合胶束的非离子表面活性剂可以逆转 SDS 变性,使蛋白质游离以重新折叠。如果只有一部分蛋白质最初被 SDS 剥离,则可以在平行轨道上发生重折叠。除非在低 pH 下进行,否则 SDS 展开几乎总是可逆的,因为电荷中和会导致蛋白质-表面活性剂复合物的超簇。随着 SDS 变性的一般机制现在得到了牢固确立,在很大程度上仍需要探索其他离子表面活性剂(包括生物表面活性剂)如何偏离这条路径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验