Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
Arch Biochem Biophys. 2022 Oct 30;729:109380. doi: 10.1016/j.abb.2022.109380. Epub 2022 Aug 23.
Due to the importance of benzodiazepine drugs in clinical practice, such as the treatment of anxiety disorders, depression, and insomnia and the side effects of classical benzodiazepines, the study of new benzodiazepine agonists has received much attentions. In this work, we used in silico methods to explore the molecular mechanism of 1,2,4-triazolo [1,5-a] pyrimidinone derivatives in the modulation of αβγ subtype of GABA receptor. To this aim, molecular docking, molecular dynamics simulation (MD), post-MD analysis, binding free energy calculation, and prediction of ADME properties were performed. Results showed that all new compounds have a better binding affinity for the Benzodiazepine (BZD) site of the receptor than diazepam and compound 4c had the highest affinity among them. Moreover, a good agreement was observed between the calculated ΔG and experimental IC values. Also, we noticed that residues in loop regions (particularly loop C and D-F in α and γ subunits, respectively) forming BZD binding site, take part in forming several H-bonds between the agonists and the receptor. Ser205, Thr207, Tyr160, and His102 of α subunit and Thr207 of γ subunit are mainly involved in forming H-bonds. Also, the orientation of agonists in the BZD binding site leads to π-π interactions with hydrophobic residues in loops A-F. Based on the DCCM analysis, the correlated motions in the γ subunit residues are greater than those of α subunit residues. Further, predicted ADME results indicated that all agonists meet the criteria. The triplicate MD simulation showed the reproducibility of the results and strengthened the study. Our results provide a comprehensive insight into the receptor-agonist interactions and clues for designing future BZD agonists.
由于苯二氮䓬类药物在临床实践中的重要性,例如治疗焦虑症、抑郁症和失眠症,以及经典苯二氮䓬类药物的副作用,因此新的苯二氮䓬类激动剂的研究受到了广泛关注。在这项工作中,我们使用计算方法探索了 1,2,4-三唑并[1,5-a]嘧啶酮衍生物在调节 GABA 受体的 αβγ 亚型中的分子机制。为此,进行了分子对接、分子动力学模拟 (MD)、MD 后分析、结合自由能计算和 ADME 性质预测。结果表明,所有新化合物与受体的苯二氮䓬 (BZD) 结合位点的结合亲和力均优于地西泮,其中化合物 4c 的亲和力最高。此外,计算的 ΔG 与实验 IC 值之间观察到良好的一致性。我们还注意到,Loop 区域(特别是 α 和 γ 亚基中的 Loop C 和 D-F)中的残基参与形成 BZD 结合位点,在激动剂与受体之间形成几个氢键。α 亚基中的 Ser205、Thr207、Tyr160 和 His102 和 γ 亚基中的 Thr207 主要参与形成氢键。此外,激动剂在 BZD 结合位点中的取向导致与 Loop A-F 中的疏水性残基形成 π-π 相互作用。基于 DCCM 分析,γ 亚基残基的相关运动大于 α 亚基残基的相关运动。此外,预测的 ADME 结果表明,所有激动剂均符合标准。三重 MD 模拟显示了结果的可重复性,并加强了研究。我们的结果提供了对受体-激动剂相互作用的全面了解,并为设计未来的 BZD 激动剂提供了线索。