Akbari Mahmood
UNESCO‑UNISA‑ITL/NRF Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
J Mol Model. 2025 Apr 3;31(5):132. doi: 10.1007/s00894-025-06361-4.
The interaction between phytochemicals and nanoparticles plays a crucial role in nanotechnology and biomedical applications. This study investigates the binding behavior and stability of six phytochemicals-Catechin, Limonene, Sabinene, Sinapic Acid, Vanillic Acid, and Luteolin 7-O-ß-glucuronide-with Er₂O₃ nanoparticles using Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations. The findings indicate that Luteolin, Catechin, and Sinapic Acid exhibit the strongest binding affinities and highest structural stability with ErO, attributed to their balanced hydrophilicity-lipophilicity and favorable electronic properties. These insights contribute to the design and functionalization of phytochemical-based nanomaterials, with potential applications in drug delivery, bioimaging, and photodynamic therapy.
DFT calculations were conducted using Gaussian 09 at the B3LYP/6-311 + + G(d,p) level to determine HOMO-LUMO energy gaps, dipole moments, and polarizability of the phytochemicals. MD simulations, performed using GROMACS 2019 with the CHARMM36 force field and TIP3P water model, analyzed the dynamics of phytochemical adsorption on a 5 nm ErO nanoparticle over 50 ns. Key parameters such as interaction energies, root mean square deviations (RMSD), radial distribution functions (RDF), and water solubility (logS) were evaluated using ALOPGPS 2.1 software.
植物化学物质与纳米颗粒之间的相互作用在纳米技术和生物医学应用中起着至关重要的作用。本研究使用密度泛函理论(DFT)和分子动力学(MD)模拟研究了六种植物化学物质——儿茶素、柠檬烯、桧烯、芥子酸、香草酸和木犀草素7 - O - β - 葡萄糖醛酸苷——与Er₂O₃纳米颗粒的结合行为和稳定性。研究结果表明,木犀草素、儿茶素和芥子酸与ErO表现出最强的结合亲和力和最高的结构稳定性,这归因于它们平衡的亲水性 - 亲脂性和良好的电子性质。这些见解有助于基于植物化学物质的纳米材料的设计和功能化,在药物递送、生物成像和光动力疗法中具有潜在应用。
使用高斯09在B3LYP/6 - 311++G(d,p)水平进行DFT计算,以确定植物化学物质的最高占据分子轨道(HOMO) - 最低未占据分子轨道(LUMO)能隙、偶极矩和极化率。使用GROMACS 2019并结合CHARMM36力场和TIP3P水模型进行MD模拟,分析了植物化学物质在5纳米ErO纳米颗粒上50纳秒内的吸附动力学。使用ALOPGPS 2.1软件评估了诸如相互作用能、均方根偏差(RMSD)、径向分布函数(RDF)和水溶性(logS)等关键参数。