Suppr超能文献

模块化纳米结构助力n型SnSe实现低导热性和超高热电性能。

Modular Nanostructures Facilitate Low Thermal Conductivity and Ultra-High Thermoelectric Performance in n-Type SnSe.

作者信息

Chandra Sushmita, Bhat Usha, Dutta Prabir, Bhardwaj Aditya, Datta Ranjan, Biswas Kanishka

机构信息

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India.

Chemistry and Physics of Materials Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India.

出版信息

Adv Mater. 2022 Oct;34(40):e2203725. doi: 10.1002/adma.202203725. Epub 2022 Sep 3.

Abstract

Single crystals of SnSe have gained considerable attention in thermoelectrics due to their unprecedented thermoelectric performance. However, polycrystalline SnSe is more favorable for practical applications due to its facile chemical synthesis procedure, processability, and scalability. Though the thermoelectric figure of merit (zT) of p-type bulk SnSe polycrystals has reached >2.5, zT of n-type counterpart is still lower and lies around ≈1.5. Herein, record high zT of 2.0 in n-type polycrystalline SnSe  + x mol% MoCl (x = 0-3) samples is reported, when measured parallel to the spark plasma sintering pressing direction due to the simultaneous optimization of n-type carrier concentration and enhanced phonon scattering by incorporating modular nano-heterostructures in SnSe matrix. Modular nanostructures of layered intergrowth [(SnSe) ] (MoSe ) like compounds embedded in SnSe matrix scatters the phonons significantly leading to an ultra-low lattice thermal conductivity (κ ) of ≈0.26 W m K at 798 K in SnSe  + 3 mol% MoCl . The 2D layered modular intergrowth compound resembles the nano-heterostructure and their periodicity of 1.2-2.6 nm in the SnSe matrix matches the phonon mean free path of SnSe, thereby blocking the heat carrying phonons, which result in low κ and ultra-high thermoelectric performance in n-type SnSe.

摘要

由于其前所未有的热电性能,硒化锡单晶在热电领域受到了广泛关注。然而,多晶硒化锡因其简便的化学合成方法、可加工性和可扩展性,更有利于实际应用。尽管p型块状硒化锡多晶的热电优值(zT)已达到>2.5,但n型对应物的zT仍较低,约为1.5左右。在此,报道了在n型多晶硒化锡+x mol% MoCl(x = 0 - 3)样品中,当平行于放电等离子体烧结压制方向测量时,由于在硒化锡基体中引入模块化纳米异质结构,同时优化了n型载流子浓度并增强了声子散射,记录到高达2.0的zT。嵌入硒化锡基体中的层状共生(SnSe) 类化合物的模块化纳米结构显著散射声子,导致在798 K时,硒化锡 + 3 mol% MoCl中的晶格热导率(κ )超低,约为0.26 W m K 。二维层状模块化共生化合物类似于纳米异质结构,它们在硒化锡基体中的周期为1.2 - 2.6 nm,与硒化锡的声子平均自由程相匹配,从而阻挡了携带热量的声子,这导致n型硒化锡具有低κ 和超高的热电性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验