Abbey Stanley, Jang Hanhwi, Frimpong Brakowaa, Nguyen Van Quang, Park Jong Ho, Park Su-Dong, Cho Sunglae, Jung Yeon Sik, Hong Ki-Ha, Oh Min-Wook
Department of Materials Science and Engineering, Hanbat National University, Yuseong-gu, Daejeon, 34158, Republic of South Korea.
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of South Korea.
Adv Sci (Weinh). 2024 Sep;11(35):e2402147. doi: 10.1002/advs.202402147. Epub 2024 Jul 23.
Manipulating the grain boundary and chiral structure of enantiomorphic inorganic thermoelectric materials facilitates a new degree of freedom for enhancing thermoelectric energy conversion. Chiral twist mechanisms evolve by the screw dislocation phenomenon in the nanostructures; however, contributions of such chiral transport have been neglected for bulk crystals. Tellurium (Te) has a chiral trigonal crystal structure, high band degeneracy, and lattice anharmonicity for high thermoelectric performance. Here, Sb-doped Te crystals are grown to minimize the severe grain boundary effects on carrier transport and investigate the interface of chiral Te matrix and embedded achiral SbTe precipitates, which induce unusual lattice twists. The low grain boundary scattering and conformational grain restructuring provide electrical-favorable semicoherent interfaces. This maintains high electrical conductivity leading to a twofold increase in power factor compared to polycrystal samples. The embedded SbTe precipitates concurrently enable moderate phonon scattering leading to a remarkable decrease in lattice thermal conductivity and a high dimensionless figure of merit (zT) of 1.1 at 623 K. The crystal growth and chiral atomic reorientation unravel the emerging benefits of interface engineering as a crucial contributor to effectively enhancing carrier transport and minimizing phonon propagation in thermoelectric materials.
调控对映体无机热电材料的晶界和手性结构为增强热电能量转换提供了新的自由度。手性扭曲机制是由纳米结构中的螺旋位错现象演变而来的;然而,对于块状晶体,这种手性输运的贡献一直被忽视。碲(Te)具有手性三角晶体结构、高能带简并性和晶格非谐性,具有较高的热电性能。在此,生长了锑掺杂碲晶体,以尽量减少严重的晶界对载流子输运的影响,并研究手性碲基体与嵌入的非手性锑碲沉淀的界面,这会引起异常的晶格扭曲。低晶界散射和构象晶粒重组提供了电学上有利的半相干界面。这维持了高电导率,与多晶样品相比,功率因数提高了两倍。嵌入的锑碲沉淀同时实现了适度的声子散射,导致晶格热导率显著降低,在623 K时具有1.1的高无量纲品质因数(zT)。晶体生长和手性原子重新取向揭示了界面工程作为有效增强载流子输运和最小化热电材料中声子传播的关键因素所带来的新益处。