Guerreiro Inês, Gu Zhenglin, Yakel Jerrel L, Gutkin Boris S
Group for Neural Theory, LNC2 INSERM U960, Département d'études cognitives, Ecole Normale Superieure, PSL Université Paris, 75005 Paris, France
Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
eNeuro. 2022 Aug 25;9(5). doi: 10.1523/ENEURO.0389-21.2022.
The CA1 pyramidal neurons are embedded in an intricate local circuitry that contains a variety of interneurons. The roles these interneurons play in the regulation of the excitatory synaptic plasticity remains largely understudied. Recent experiments showed that recurring cholinergic activation of α7 nACh receptors expressed in oriens-lacunosum-moleculare (OLMα2) interneurons can directly induce LTP in Schaffer collateral (SC)-CA1 synapses. Here, we pair studies with biophysically based modeling to uncover the underlying mechanisms. According to our model, α7 nAChR activation increases OLM GABAergic activity. This results in the inhibition of the fast-spiking interneurons that provide feedforward inhibition onto CA1 pyramidal neurons. This disinhibition, paired with tightly timed SC stimulation, can induce potentiation at the excitatory synapses of CA1 pyramidal neurons. Our work details the role of cholinergic modulation in disinhibition-induced hippocampal plasticity. It relates the timing of cholinergic pairing found experimentally in previous studies with the timing between disinhibition and hippocampal stimulation necessary to induce potentiation and suggests the dynamics of the involved interneurons play a crucial role in determining this timing.We use a combination of experiments and mechanistic modeling to uncover the key role for cholinergic neuromodulation of feedforward disinhibitory circuits in regulating hippocampal plasticity. We found that cholinergic activation of α7 nAChR on α7 nACh receptors expressed in oriens-lacunosum-moleculare interneurons, when tightly paired with stimulation of the Schaffer collaterals, can cancel feedforward inhibition onto CA1 pyramidal cells, enabling the potentiation of the SC-CA1 synapse. Our work details how cholinergic action on GABAergic interneurons can tightly regulate the excitability and plasticity of the hippocampal network, unraveling the intricate interplay of the hierarchal inhibitory circuitry and cholinergic neuromodulation as a mechanism for hippocampal plasticity.
CA1锥体细胞嵌入在一个复杂的局部神经回路中,该回路包含多种中间神经元。这些中间神经元在兴奋性突触可塑性调节中所起的作用在很大程度上仍未得到充分研究。最近的实验表明,在海马伞-分子层(OLMα2)中间神经元中表达的α7烟碱型乙酰胆碱受体(nACh受体)反复受到胆碱能激活,可直接在海马穿通通路(SC)-CA1突触中诱导长时程增强(LTP)。在此,我们将实验研究与基于生物物理学的建模相结合,以揭示其潜在机制。根据我们的模型,α7 nACh受体激活会增加OLM中间神经元的GABA能活性。这会导致对向CA1锥体细胞提供前馈抑制的快速发放中间神经元的抑制。这种去抑制作用,再加上适时的SC刺激,可在CA1锥体细胞的兴奋性突触处诱导增强作用。我们的工作详细阐述了胆碱能调制在去抑制诱导的海马可塑性中的作用。它将先前研究中实验发现的胆碱能配对时间与诱导增强作用所需的去抑制和海马刺激之间的时间联系起来,并表明所涉及的中间神经元的动力学在确定这一时间方面起着关键作用。我们结合实验和机制建模,揭示了胆碱能神经调制在前馈去抑制回路中对调节海马可塑性的关键作用。我们发现,当在海马伞-分子层中间神经元中表达的α7 nACh受体上的α7 nACh受体受到胆碱能激活,并与海马穿通通路的刺激紧密配对时,可消除对CA1锥体细胞的前馈抑制,从而使SC-CA1突触增强。我们的工作详细说明了胆碱能对GABA能中间神经元的作用如何紧密调节海马网络的兴奋性和可塑性,揭示了层级抑制回路和胆碱能神经调制之间复杂的相互作用,作为海马可塑性的一种机制。