Suppr超能文献

CHAP-child:一种从儿童髋部加速度计中估算坐立转换和久坐时间模式的开源方法。

CHAP-child: an open source method for estimating sit-to-stand transitions and sedentary bout patterns from hip accelerometers among children.

机构信息

Center for Children's Healthy Lifestyles & Nutrition, Children's Mercy Kansas City, 610 E. 22ndSt., Kansas City, MO, 64108, USA.

Department of Pediatrics, University of Missouri - Kansas City, Kansas City, MO, USA.

出版信息

Int J Behav Nutr Phys Act. 2022 Aug 26;19(1):109. doi: 10.1186/s12966-022-01349-2.

Abstract

BACKGROUND

Hip-worn accelerometer cut-points have poor validity for assessing children's sedentary time, which may partly explain the equivocal health associations shown in prior research. Improved processing/classification methods for these monitors would enrich the evidence base and inform the development of more effective public health guidelines. The present study aimed to develop and evaluate a novel computational method (CHAP-child) for classifying sedentary time from hip-worn accelerometer data.

METHODS

Participants were 278, 8-11-year-olds recruited from nine primary schools in Melbourne, Australia with differing socioeconomic status. Participants concurrently wore a thigh-worn activPAL (ground truth) and hip-worn ActiGraph (test measure) during up to 4 seasonal assessment periods, each lasting up to 8 days. activPAL data were used to train and evaluate the CHAP-child deep learning model to classify each 10-s epoch of raw ActiGraph acceleration data as sitting or non-sitting, creating comparable information from the two monitors. CHAP-child was evaluated alongside the current practice 100 counts per minute (cpm) method for hip-worn ActiGraph monitors. Performance was tested for each 10-s epoch and for participant-season level sedentary time and bout variables (e.g., mean bout duration).

RESULTS

Across participant-seasons, CHAP-child correctly classified each epoch as sitting or non-sitting relative to activPAL, with mean balanced accuracy of 87.6% (SD = 5.3%). Sit-to-stand transitions were correctly classified with mean sensitivity of 76.3% (SD = 8.3). For most participant-season level variables, CHAP-child estimates were within ± 11% (mean absolute percent error [MAPE]) of activPAL, and correlations between CHAP-child and activPAL were generally very large (> 0.80). For the current practice 100 cpm method, most MAPEs were greater than ± 30% and most correlations were small or moderate (≤ 0.60) relative to activPAL.

CONCLUSIONS

There was strong support for the concurrent validity of the CHAP-child classification method, which allows researchers to derive activPAL-equivalent measures of sedentary time, sit-to-stand transitions, and sedentary bout patterns from hip-worn triaxial ActiGraph data. Applying CHAP-child to existing datasets may provide greater insights into the potential impacts and influences of sedentary time in children.

摘要

背景

髋部佩戴的加速度计切点在评估儿童久坐时间方面的有效性较差,这可能部分解释了先前研究中久坐时间与健康之间关联不明确的原因。这些监测器的改进处理/分类方法将丰富证据基础,并为制定更有效的公共卫生指南提供信息。本研究旨在开发和评估一种新的计算方法(CHAP-child),用于从髋部佩戴的加速度计数据中分类久坐时间。

方法

参与者是 278 名 8-11 岁的儿童,他们来自澳大利亚墨尔本的九所不同社会经济地位的小学。参与者在最多 4 个季节性评估期间同时佩戴大腿佩戴的 activPAL(地面真实)和髋部佩戴的 ActiGraph(测试测量),每个评估期最长可达 8 天。activPAL 数据用于训练和评估 CHAP-child 深度学习模型,以将每个 10 秒的 ActiGraph 加速度原始数据记录分类为坐姿或非坐姿,从而从两个监测器中创建可比信息。CHAP-child 与当前实践中 100 计数/分钟(cpm)方法进行了比较,用于髋部佩戴的 ActiGraph 监测器。对每个 10 秒的记录和参与者季节水平的久坐时间和时间变量(例如,平均时间变量持续时间)进行了性能测试。

结果

在整个参与者季节中,CHAP-child 相对于 activPAL 正确地将每个记录分类为坐姿或非坐姿,平均平衡准确性为 87.6%(SD=5.3%)。坐姿到站立的转换被正确分类,平均灵敏度为 76.3%(SD=8.3%)。对于大多数参与者季节水平变量,CHAP-child 的估计值与 activPAL 的偏差在±11%以内(平均绝对百分比误差[MAPE]),并且 CHAP-child 与 activPAL 之间的相关性通常非常大(>0.80)。对于当前实践中的 100 cpm 方法,大多数 MAPE 值大于±30%,大多数相关性较小或中等(≤0.60),与 activPAL 相比。

结论

CHAP-child 分类方法的同时有效性得到了强有力的支持,该方法允许研究人员从髋部佩戴的三轴 ActiGraph 数据中得出与 activPAL 相当的久坐时间、坐姿到站立转换和久坐时间模式的测量值。将 CHAP-child 应用于现有数据集可能会提供更多有关儿童久坐时间潜在影响和影响的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ac/9419346/cabe4d1eebef/12966_2022_1349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验