Suppr超能文献

基于 CNN 加速度计的坐姿分类方法(CHAP):对髋关节加速度计坐姿模式的验证性研究。

The CNN Hip Accelerometer Posture (CHAP) Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation Study.

机构信息

Kaiser Permanente Washington Health Research Institute, Seattle, WA.

Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA.

出版信息

Med Sci Sports Exerc. 2021 Nov 1;53(11):2445-2454. doi: 10.1249/MSS.0000000000002705.

Abstract

INTRODUCTION

Sitting patterns predict several healthy aging outcomes. These patterns can potentially be measured using hip-worn accelerometers, but current methods are limited by an inability to detect postural transitions. To overcome these limitations, we developed the Convolutional Neural Network Hip Accelerometer Posture (CHAP) classification method.

METHODS

CHAP was developed on 709 older adults who wore an ActiGraph GT3X+ accelerometer on the hip, with ground-truth sit/stand labels derived from concurrently worn thigh-worn activPAL inclinometers for up to 7 d. The CHAP method was compared with traditional cut-point methods of sitting pattern classification as well as a previous machine-learned algorithm (two-level behavior classification).

RESULTS

For minute-level sitting versus nonsitting classification, CHAP performed better (93% agreement with activPAL) than did other methods (74%-83% agreement). CHAP also outperformed other methods in its sensitivity to detecting sit-to-stand transitions: cut-point (73%), TLBC (26%), and CHAP (83%). CHAP's positive predictive value of capturing sit-to-stand transitions was also superior to other methods: cut-point (30%), TLBC (71%), and CHAP (83%). Day-level sitting pattern metrics, such as mean sitting bout duration, derived from CHAP did not differ significantly from activPAL, whereas other methods did: activPAL (15.4 min of mean sitting bout duration), CHAP (15.7 min), cut-point (9.4 min), and TLBC (49.4 min).

CONCLUSION

CHAP was the most accurate method for classifying sit-to-stand transitions and sitting patterns from free-living hip-worn accelerometer data in older adults. This promotes enhanced analysis of older adult movement data, resulting in more accurate measures of sitting patterns and opening the door for large-scale cohort studies into the effects of sitting patterns on healthy aging outcomes.

摘要

简介

坐姿模式可预测多种健康老龄化结果。这些模式可以通过佩戴在臀部的髋部加速度计来测量,但目前的方法受到无法检测姿势转变的限制。为了克服这些限制,我们开发了卷积神经网络髋部加速度计姿势 (CHAP) 分类方法。

方法

CHAP 是在 709 名佩戴 ActiGraph GT3X+ 加速度计的老年人身上开发的,其坐姿/站立标签来自同时佩戴在大腿上的 activPAL 测斜仪,持续时间长达 7 天。CHAP 方法与传统坐姿模式分类的切点方法以及以前的机器学习算法(两级行为分类)进行了比较。

结果

对于分钟级的坐姿与非坐姿分类,CHAP 的表现优于其他方法(与 activPAL 的一致性为 93%)。CHAP 还在检测坐站转换方面优于其他方法:切点(73%)、TLBC(26%)和 CHAP(83%)。CHAP 捕捉坐站转换的阳性预测值也优于其他方法:切点(30%)、TLBC(71%)和 CHAP(83%)。CHAP 从髋部加速度计数据中得出的日级坐姿模式指标,如平均坐姿持续时间,与 activPAL 没有显著差异,而其他方法则存在差异:activPAL(平均坐姿持续时间 15.4 分钟)、CHAP(15.7 分钟)、切点(9.4 分钟)和 TLBC(49.4 分钟)。

结论

CHAP 是分类老年人自由生活髋部加速度计数据中坐站转换和坐姿模式最准确的方法。这促进了对老年人运动数据的更深入分析,从而更准确地测量坐姿模式,并为研究坐姿模式对健康老龄化结果的影响的大规模队列研究开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c38/8542076/569bb02a0f0c/msse-53-2445-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验