Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut.
Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.
Biophys J. 2022 Sep 20;121(18):3334-3344. doi: 10.1016/j.bpj.2022.08.027. Epub 2022 Aug 27.
Recent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ∼190 nm segments apart. The impact of this periodic arrangement of sodium channels on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment, but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials but instead leads to large, localized sodium action currents caused by high-density sodium nanodomains. Additionally, our simulations show that the distance between periodic sodium channel strips could control axonal excitability, suggesting a previously underappreciated mechanism to regulate neuronal firing properties. Together, this work provides a critical new insight into the role of the periodic arrangement of sodium channels in axons, providing a foundation for future experimental studies.
最近的研究已经证实,轴突具有周期性的骨架结构,由连接在纵向血影蛋白四聚体丝上的方位 actin 环组成。这种结构赋予了轴突结构完整性和机械稳定性。此外,电压门控钠通道遵循活性血影蛋白排列的周期性,间隔约 190nm 片段。这种钠通道的周期性排列对动作电位的产生和传播的影响尚不清楚。为了解决这个问题,我们使用 Hodgkin-Huxley 形式在圆柱隔室中模拟了一个动作电位,但我们没有在膜中使用电压门控钠通道的均匀分布,而是应用了实验确定的周期性排列。我们发现,电压门控钠通道的周期性分布不会显著影响动作电位的产生或传播,但会导致由于高密度钠纳米域引起的大的局部钠动作电流。此外,我们的模拟表明,周期性钠通道带之间的距离可以控制轴突的兴奋性,这表明存在一种以前未被充分认识的调节神经元放电特性的机制。总之,这项工作为轴突中钠通道的周期性排列的作用提供了一个关键的新见解,为未来的实验研究提供了基础。