Suppr超能文献

钠通道β2亚基可防止轴突分支点处动作电位传播失败。

Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

作者信息

Cho In Ha, Panzera Lauren C, Chin Morven, Hoppa Michael B

机构信息

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755.

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755

出版信息

J Neurosci. 2017 Sep 27;37(39):9519-9533. doi: 10.1523/JNEUROSCI.0891-17.2017. Epub 2017 Sep 4.

Abstract

Neurotransmitter release depends on voltage-gated Na channels (Nas) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na channels. Using optical recordings of Ca and membrane voltage, we demonstrate here that Na channel β2 subunits (Naβ2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Naβ2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Naβ2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. Voltage-gated Ca channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na channel β2 subunits modulate AP-evoked Ca-influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain.

摘要

神经递质的释放依赖于电压门控钠通道(Na通道),以便将动作电位(AP)从轴突丘成功传导至突触终末。轴突的无髓鞘部分结构多样,包括分支点和众多突触前终末,其钠通道的分子伴侣尚不明确。通过对钙和膜电压进行光学记录,我们在此证明,钠通道β2亚基(Naβ2)是防止AP在培养的大鼠海马神经元(雌雄混合)轴突分支上传播失败所必需的。当Naβ2的表达降低时,我们发现了两种特定的表型:(1)突触处的膜兴奋性和AP诱发的钙内流受损;(2)AP传播严重受损,超过40%的轴突分支不再对AP刺激产生反应。我们进一步表明,在轴突分支上,AP波形中存在大量与轴突形态无关的电信号异质性。因此,Naβ2是无髓鞘轴突中轴突兴奋性和突触功能的关键调节因子。电压门控钙通道是神经传递的支点,可在突触终末将电输入转化为囊泡融合形式的化学输出。然而,电信号即突触前动作电位(AP)在调节突触传递中的作用尚不清楚。轴突中传播的AP波形的保真度如何,以及在整个轴突分支中哪些分子塑造了它?我们的研究确定了无髓鞘轴突中AP传播的几个新特征:(1)单个轴突分支的AP波形各不相同,与形态无关;(2)钠通道β2亚基调节AP诱发的钙内流;(3)β2亚基维持AP在轴突分支上的成功传播。这些发现对于理解大脑中的兴奋流具有重要意义。

相似文献

1
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
J Neurosci. 2017 Sep 27;37(39):9519-9533. doi: 10.1523/JNEUROSCI.0891-17.2017. Epub 2017 Sep 4.
2
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca Influx through Ca2.1 Channels.
J Neurosci. 2018 Sep 19;38(38):8277-8294. doi: 10.1523/JNEUROSCI.0511-18.2018. Epub 2018 Aug 13.
3
Voltage-Gated Potassium Channels Ensure Action Potential Shape Fidelity in Distal Axons.
J Neurosci. 2021 Jun 23;41(25):5372-5385. doi: 10.1523/JNEUROSCI.2765-20.2021. Epub 2021 May 17.
5
Sodium Channel-Dependent and -Independent Mechanisms Underlying Axonal Afterdepolarization at Mouse Hippocampal Mossy Fibers.
eNeuro. 2018 Aug 23;5(4). doi: 10.1523/ENEURO.0254-18.2018. eCollection 2018 Jul-Aug.
6
Ca entry through Na channels generates submillisecond axonal Ca signaling.
Elife. 2020 Jun 17;9:e54566. doi: 10.7554/eLife.54566.
8
Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
J Physiol. 2006 Oct 1;576(Pt 1):235-56. doi: 10.1113/jphysiol.2006.111336. Epub 2006 Jul 13.
9
Neuronal signaling in central nervous system.
Sheng Li Xue Bao. 2011 Feb 25;63(1):1-8.
10
Effects of axonal topology on the somatic modulation of synaptic outputs.
J Neurosci. 2012 Feb 22;32(8):2868-76. doi: 10.1523/JNEUROSCI.5365-11.2012.

引用本文的文献

2
Subthreshold electric fields bidirectionally modulate neurotransmitter release through axon polarization.
bioRxiv. 2025 Feb 22:2025.02.22.639625. doi: 10.1101/2025.02.22.639625.
4
Spike transmission failures in axons from cortical neurons .
iScience. 2024 Sep 5;27(10):110884. doi: 10.1016/j.isci.2024.110884. eCollection 2024 Oct 18.
5
Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology.
J Neurosci. 2024 Mar 13;44(11):e1446232023. doi: 10.1523/JNEUROSCI.1446-23.2023.
6
Spike transmission failures in axons from mouse cortical pyramidal neurons in vivo.
bioRxiv. 2024 Jan 30:2024.01.29.577733. doi: 10.1101/2024.01.29.577733.
7
Activity-dependent endoplasmic reticulum Ca uptake depends on Kv2.1-mediated endoplasmic reticulum/plasma membrane junctions to promote synaptic transmission.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2117135119. doi: 10.1073/pnas.2117135119. Epub 2022 Jul 21.
8
Voltage-Gated Potassium Channels Ensure Action Potential Shape Fidelity in Distal Axons.
J Neurosci. 2021 Jun 23;41(25):5372-5385. doi: 10.1523/JNEUROSCI.2765-20.2021. Epub 2021 May 17.
9
The potassium channel subunit Kβ1 serves as a major control point for synaptic facilitation.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29937-29947. doi: 10.1073/pnas.2000790117. Epub 2020 Nov 9.
10
Optical Studies of Action Potential Dynamics with hVOS probes.
Curr Opin Biomed Eng. 2019 Dec;12:51-58. doi: 10.1016/j.cobme.2019.09.007. Epub 2019 Sep 23.

本文引用的文献

1
Target Cell Type-Dependent Differences in Ca Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals.
J Neurosci. 2017 Feb 15;37(7):1910-1924. doi: 10.1523/JNEUROSCI.2024-16.2017. Epub 2017 Jan 23.
2
Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.
Neuron. 2016 Jul 20;91(2):370-83. doi: 10.1016/j.neuron.2016.05.035. Epub 2016 Jun 23.
3
Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.
Front Synaptic Neurosci. 2016 Mar 2;8:5. doi: 10.3389/fnsyn.2016.00005. eCollection 2016.
4
Axonal Filtering Allows Reliable Output during Dendritic Plateau-Driven Complex Spiking in CA1 Neurons.
Neuron. 2016 Feb 17;89(4):770-83. doi: 10.1016/j.neuron.2015.12.040. Epub 2016 Jan 28.
6
The new nanophysiology: regulation of ionic flow in neuronal subcompartments.
Nat Rev Neurosci. 2015 Nov;16(11):685-92. doi: 10.1038/nrn4022. Epub 2015 Oct 14.
7
Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development.
PLoS One. 2015 Apr 15;10(4):e0124397. doi: 10.1371/journal.pone.0124397. eCollection 2015.
8
Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording.
Neuron. 2015 Mar 18;85(6):1273-88. doi: 10.1016/j.neuron.2015.02.013. Epub 2015 Feb 26.
9
A new look at sodium channel β subunits.
Open Biol. 2015 Jan;5(1):140192. doi: 10.1098/rsob.140192.
10
Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals.
Neuron. 2014 Nov 19;84(4):778-89. doi: 10.1016/j.neuron.2014.09.038. Epub 2014 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验