Suppr超能文献

用于破译真菌培养白蚁肠道微生物群木质纤维素分解系统的细菌种代谢相互作用网络。

Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota.

机构信息

School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.

P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.

出版信息

Biosystems. 2022 Nov;221:104763. doi: 10.1016/j.biosystems.2022.104763. Epub 2022 Aug 24.

Abstract

Fungus-cultivating termite Odontotermes badius developed a mutualistic association with Termitomyces fungi for the plant material decomposition and providing a food source for the host survival. The mutualistic relationship sifted the microbiome composition of the termite gut and Termitomyces fungal comb. Symbiotic bacterial communities in the O. badius gut and fungal comb have been studied extensively to identify abundant bacteria and their lignocellulose degradation capabilities. Despite several metagenomic studies, the species-wide metabolic interaction patterns of bacterial communities in termite gut and fungal comb remains unclear. The bacterial species metabolic interaction network (BSMIN) has been constructed with 230 bacteria identified from the O. badius gut and fungal comb microbiota. The network portrayed the metabolic map of the entire microbiota and highlighted several inter-species biochemical interactions like cross-feeding, metabolic interdependency, and competition. Further, the reconstruction and analysis of the bacterial influence network (BIN) quantified the positive and negative pairwise influences in the termite gut and fungal comb microbial communities. Several key macromolecule degraders and fermentative microbial entities have been identified by analyzing the BIN. The mechanistic interplay between these influential microbial groups and the crucial glycoside hydrolases (GH) enzymes produced by the macromolecule degraders execute the community-wide functionality of lignocellulose degradation and subsequent fermentation. The metabolic interaction pattern between the nine influential microbial species has been determined by considering them growing in a synthetic microbial community. Competition (30%), parasitism (47%), and mutualism (17%) were predicted to be the major mode of metabolic interaction in this synthetic microbial community. Further, the antagonistic metabolic effect was found to be very high in the metabolic-deprived condition, which may disrupt the community functionality. Thus, metabolic interactions of the crucial bacterial species and their GH enzyme cocktail identified from the O. badius gut and fungal comb microbiota may provide essential knowledge for developing a synthetic microcosm with efficient lignocellulolytic machinery.

摘要

培育真菌的白蚁 Odontotermes badius 与真菌 Termitomyces 建立了互利共生关系,以分解植物材料并为宿主的生存提供食物来源。这种共生关系筛选了白蚁肠道和 Termitomyces 真菌巢的微生物群落组成。共生细菌群落已经在 O. badius 肠道和真菌巢中进行了广泛的研究,以鉴定丰富的细菌及其木质纤维素降解能力。尽管进行了几项宏基因组研究,但白蚁肠道和真菌巢中细菌群落的种间代谢相互作用模式仍不清楚。通过从 O. badius 肠道和真菌巢微生物群中鉴定出的 230 种细菌构建了细菌物种代谢相互作用网络(BSMIN)。该网络描绘了整个微生物群的代谢图谱,并突出了几种种间生化相互作用,如交叉喂养、代谢相互依存和竞争。此外,通过重建和分析细菌影响网络(BIN),量化了白蚁肠道和真菌巢微生物群落中正负的成对影响。通过分析 BIN,确定了几种关键的大分子降解剂和发酵微生物实体。这些有影响力的微生物群体与大分子降解剂产生的关键糖苷水解酶(GH)酶之间的机制相互作用,执行木质纤维素降解和随后发酵的全社区功能。通过考虑在合成微生物群落中生长的 9 种有影响力的微生物物种之间的代谢相互作用模式,确定了它们之间的竞争(30%)、寄生(47%)和共生(17%)可能是这种合成微生物群落中主要的代谢相互作用模式。此外,在代谢匮乏的条件下,发现拮抗代谢效应非常高,这可能会破坏社区功能。因此,从 O. badius 肠道和真菌巢微生物群中鉴定出的关键细菌物种及其 GH 酶混合物的代谢相互作用可能为开发具有高效木质纤维素分解机制的合成微宇宙提供必要的知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验