Suppr超能文献

左旋多巴对帕金森病的反应性:利用真实经验与机器学习分析。

Levodopa responsiveness in Parkinson's disease: harnessing real-life experience with machine-learning analysis.

机构信息

Department of Neurology, Movement Disorders Clinic, Rabin Medical Center-Beilinson Hospital, Petach Tikva; Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel.

出版信息

J Neural Transm (Vienna). 2022 Oct;129(10):1289-1297. doi: 10.1007/s00702-022-02540-2. Epub 2022 Aug 27.

Abstract

Responsiveness to levodopa varies greatly among patients with Parkinson's disease (PD). The factors that affect it are ill defined. The aim of the study was to identify factors predictive of long-term response to levodopa. The medical records of 296 patients with PD (mean age of onset, 62.2 ± 9.7 years) were screened for demographics, previous treatments, and clinical phenotypes. All patients were assessed with the Unified PD Rating Scale (UPDRS)-III before and 3 months after levodopa initiation. Regression and machine-learning analyses were used to determine factors that are associated with levodopa responsiveness and might identify patients who will benefit from treatment. The UPDRS-III score improved by ≥ 30% (good response) in 128 patients (43%). On regression analysis, female gender, young age at onset, and early use of dopamine agonists predicted a good response. Time to initiation of levodopa treatment had no effect on responsiveness except in patients older than 72 years, who were less responsive. Machine-learning analysis validated these factors and added several others: symptoms of rigidity and bradykinesia, disease onset in the legs and on the left side, and fewer white vascular ischemic changes, comorbidities, and pre-non-motor symptoms. The main determinants of variations in levodopa responsiveness are gender, age, and clinical phenotype. Early use of dopamine agonists does not hamper levodopa responsiveness. In addition to validating the regression analysis results, machine-learning methods helped to determine the specific clinical phenotype of patients who may benefit from levodopa in terms of comorbidities and pre-motor and non-motor symptoms.

摘要

帕金森病(PD)患者对左旋多巴的反应差异很大。影响其因素尚未明确。本研究旨在确定预测长期对左旋多巴反应的因素。筛选了 296 名 PD 患者(平均发病年龄 62.2±9.7 岁)的病历,以了解人口统计学、既往治疗和临床表型等因素。所有患者在左旋多巴起始前和 3 个月后均使用统一帕金森病评定量表(UPDRS-III)进行评估。采用回归和机器学习分析确定与左旋多巴反应性相关的因素,并确定可能从治疗中获益的患者。128 名患者(43%)的 UPDRS-III 评分改善≥30%(反应良好)。回归分析显示,女性、发病年龄较小和早期使用多巴胺激动剂可预测良好反应。除 72 岁以上患者外,左旋多巴治疗开始时间对反应性无影响,而这些患者的反应性较差。机器学习分析验证了这些因素,并添加了其他因素:僵硬和运动迟缓症状、疾病起始于腿部和左侧、较少的白色血管缺血性改变、合并症和运动前非运动症状。左旋多巴反应性变化的主要决定因素是性别、年龄和临床表型。早期使用多巴胺激动剂不会影响左旋多巴的反应性。除了验证回归分析结果外,机器学习方法还帮助确定了在合并症和运动前及非运动症状方面可能受益于左旋多巴治疗的患者的具体临床表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验