School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
Exp Physiol. 2022 Nov;107(11):1241-1254. doi: 10.1113/EP090264. Epub 2022 Sep 13.
What is the central question of this study? Ischaemic preconditioning is a novel pre-exercise priming strategy. We asked whether ischaemic preconditioning would alter mitochondrial respiratory function and pulmonary oxygen uptake kinetics and improve severe-intensity exercise performance. What is the main finding and its importance? Ischaemic preconditioning expedited overall pulmonary oxygen uptake kinetics and appeared to prevent an increase in leak respiration, proportional to maximal electron transfer system and ADP-stimulated respiration, that was evoked by severe-intensity exercise in sham-control conditions. However, severe-intensity exercise performance was not improved. The results do not support ischaemic preconditioning as a pre-exercise strategy to improve exercise performance in recreationally active participants.
We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( ) kinetics, skeletal muscle oxygenation (muscle tissue O saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre- and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P > 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min ; P = 0.03), in IPC compared with SHAM. The muscle tissue O saturation index did not differ between trials (P > 0.05). Ischaemic preconditioning expedited kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.
本研究的核心问题是什么?缺血预处理是一种新的运动前预适应策略。我们想知道缺血预处理是否会改变线粒体呼吸功能和肺氧摄取动力学,并改善高强度运动的表现。主要发现及其重要性是什么?缺血预处理加速了整体肺氧摄取动力学,似乎可以防止在假对照条件下高强度运动引起的与最大电子传递系统和 ADP 刺激呼吸成比例的泄漏呼吸增加。然而,高强度运动的表现并没有得到改善。结果不支持缺血预处理作为一种运动前策略,以提高在娱乐性活跃参与者中的运动表现。
我们研究了缺血预处理 (IPC) 对高强度运动表现、肺氧摄取 ( )动力学、骨骼肌氧合(肌肉组织氧饱和度指数)和线粒体呼吸的影响。八名男性接受了对侧 IPC(4×5 分钟,220mmHg)或假对照 (SHAM;20mmHg),然后进行了 92%最大有氧功率的计时至力竭测试。在 IPC 或 SHAM 之前和运动后约 1.5 分钟,从股外侧肌(vastus lateralis)获得活检。与 SHAM 相比,IPC 并不延长力竭时间(249±37 与 240±32 秒;P=0.62)。ADP 刺激(P)和最大(E)线粒体呼吸通过蛋白复合物(C)I、II 和 IV 在预运动和运动后没有差异(P>0.05)。与基线相比,SHAM 运动后复合 I 泄漏呼吸增加,但 IPC 中没有增加,当与湿重(P=0.01 与 P=0.19)、线粒体含量(柠檬酸合酶活性,P=0.003 与 P=0.16;CI+IIP,P=0.03 与 P=0.23)和相对于 P(P=0.006 与 P=0.30)和 E(P=0.004 与 P=0.26)进行归一化时。平均响应时间更快(51.3±15.5 与 63.7±14.5 秒;P=0.003),IPC 中的慢成分(270±105 与 377±188ml min ;P=0.03)较小。IPC 与 SHAM 相比,运动后肌肉组织氧饱和度指数没有差异(P>0.05)。IPC 加速了 动力学,似乎可以防止通过 CI 增加泄漏呼吸,当以与高强度运动引起的 E 和 P 成比例的方式表达时,但并没有提高运动表现。