Suppr超能文献

在不存在土壤干旱的情况下,温度和蒸气压亏缺的增加会导致水力损伤。

Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought.

机构信息

Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering ENAC, EPFL, Lausanne, Switzerland.

Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland.

出版信息

Plant Cell Environ. 2022 Nov;45(11):3275-3289. doi: 10.1111/pce.14425. Epub 2022 Sep 1.

Abstract

Temperature (T) and vapour pressure deficit (VPD) are important drivers of plant hydraulic conductivity, growth, mortality, and ecosystem productivity, independently of soil water availability. Our goal was to disentangle the effects of T and VPD on plant hydraulic responses. Young trees of Fagus sylvatica L., Quercus pubescens Willd. and Quercus ilex L. were exposed to a cross-combination of a T and VPD manipulation under unlimited soil water availability. Stem hydraulic conductivity and leaf-level hydraulic traits (e.g., gas exchange and osmotic adjustment) were tracked over a full growing season. Significant loss of xylem conductive area (PLA) was found in F. sylvatica and Q. pubescens due to rising VPD and T, but not in Q. ilex. Increasing T aggravated the effects of high VPD in F. sylvatica only. PLA was driven by maximum hydraulic conductivity and minimum leaf conductance, suggesting that high transpiration and water loss after stomatal closure contributed to plant hydraulic stress. This study shows for the first time that rising VPD and T lead to losses of stem conductivity even when soil water is not limiting, highlighting their rising importance in plant mortality mechanisms in the future.

摘要

温度(T)和蒸气压亏缺(VPD)是植物水力传导性、生长、死亡率和生态系统生产力的重要驱动因素,独立于土壤水分可用性。我们的目标是厘清 T 和 VPD 对植物水力响应的影响。在土壤水分不受限制的情况下,我们对欧洲山毛榉、欧洲绒毛悬钩子和欧洲木栓栎的幼树进行了 T 和 VPD 交叉组合处理。在整个生长季节,我们跟踪了茎水力传导性和叶片水平水力特性(例如气体交换和渗透调节)。由于 VPD 和 T 的升高,欧洲山毛榉和欧洲绒毛悬钩子的木质部导水面积(PLA)显著损失,但欧洲木栓栎没有。T 的升高仅加重了 F. sylvatica 中高 VPD 的影响。PLA 受最大水力传导性和最小叶片导度驱动,表明气孔关闭后蒸腾和水分损失较高导致植物水力胁迫。本研究首次表明,即使土壤水分不受限制,VPD 和 T 的升高也会导致茎导水率的损失,这突显了它们在未来植物死亡率机制中的重要性日益增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cccc/9826222/fc11c046ffb1/PCE-45-3275-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验