Suppr超能文献

检测美国气候区域间热环境的因果影响。

Detecting the causal influence of thermal environments among climate regions in the United States.

机构信息

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.

出版信息

J Environ Manage. 2022 Nov 15;322:116001. doi: 10.1016/j.jenvman.2022.116001. Epub 2022 Aug 26.

Abstract

The quantification of cross-regional interactions for the atmospheric transport processes is of crucial importance to improve the predictive capacity of climatic and environmental system modeling. The dynamic interactions in these complex systems are often nonlinear and non-separable, making conventional approaches of causal inference, such as statistical correlation or Granger causality, infeasible or ineffective. In this study, we applied an advanced approach, based on the convergent cross mapping algorithm, to detect and quantify the causal influence among different climate regions in the contiguous U.S. in response to temperature perturbations using the long-term (1901-2018) climatology of near surface air temperature record. Our results show that the directed causal network constructed by convergent cross mapping algorithm, enables us to distinguish the causal links from spurious ones rendered by statistical correlation. We also find that the Ohio Valley region, as an atmospheric convergent zone, acts as the regional gateway and mediator to the long-term thermal environments in the U.S. In addition, the temporal evolution of dynamic causality of temperature exhibits superposition of periodicities at various time scales, highlighting the impact of prominent low frequency climate variabilities such as El Niño-Southern Oscillation. The proposed method in this work will help to promote novel system-based and data-driven framework in studying the integrated environmental system dynamics.

摘要

跨区域大气传输过程的相互作用量化对于提高气候和环境系统建模的预测能力至关重要。这些复杂系统中的动态相互作用通常是非线性和不可分离的,这使得传统的因果推断方法(如统计相关性或格兰杰因果关系)不可行或无效。在本研究中,我们应用了一种先进的方法,基于收敛交叉映射算法,来检测和量化美国大陆不同气候区之间的因果影响,以响应温度扰动,使用近地表气温记录的长期(1901-2018 年)气候数据。我们的结果表明,收敛交叉映射算法构建的有向因果网络使我们能够区分因果关系和由统计相关性产生的虚假关系。我们还发现,俄亥俄河谷地区作为大气汇聚区,充当了美国长期热力环境的区域门户和中介。此外,温度动态因果关系的时间演化表现出各种时间尺度上的周期性叠加,突出了厄尔尼诺-南方涛动等显著低频气候变化的影响。本工作中提出的方法将有助于促进基于系统和数据驱动的新框架来研究综合环境系统动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验