School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong, China.
Math Biosci Eng. 2022 Jul 12;19(10):9915-9937. doi: 10.3934/mbe.2022462.
A mathematical model for the population invasion of Canada goldenrod is proposed, with two reproductive modes, yearly periodic time delay and spatially nonlocal response caused by the influence of wind on the seeds. Under suitable conditions, we obtain the existence of the rightward and leftward invasion speeds and their coincidence with the minimal speeds of time periodic traveling waves. Furthermore, the invasion speeds are finite if the dispersal kernel of seeds is exponentially bounded and infinite if dispersal kernel is exponentially unbounded.
提出了一个加拿大一枝黄花种群入侵的数学模型,该模型具有两种繁殖模式,即由风对种子的影响引起的年度周期性时滞和空间非局部响应。在适当的条件下,我们得到了右向和左向入侵速度的存在性及其与时间周期行波最小速度的吻合。此外,如果种子的扩散核是指数有界的,则入侵速度是有限的,如果扩散核是指数无界的,则入侵速度是无限的。