Suppr超能文献

基于先进的ZOOMit和同时多切片读出分段回波平面成像的乳腺MRI扩散加权成像的图像质量、全病变直方图和纹理分析

Image quality and whole-lesion histogram and texture analysis of diffusion-weighted imaging of breast MRI based on advanced ZOOMit and simultaneous multislice readout-segmented echo-planar imaging.

作者信息

Sun Kun, Zhu Hong, Xia Bingqing, Li Xinyue, Chai Weimin, Fu Caixia, Thomas Benkert, Liu Wei, Grimm Robert, Elisabeth Weiland, Yan Fuhua

机构信息

Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Department of Radiology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

出版信息

Front Oncol. 2022 Aug 12;12:913072. doi: 10.3389/fonc.2022.913072. eCollection 2022.

Abstract

OBJECTIVES

To investigate the image quality and diagnostic capability a of whole-lesion histogram and texture analysis of advanced ZOOMit (A-ZOOMit) and simultaneous multislice readout-segmented echo-planar imaging (SMS-RS-EPI) to differentiate benign from malignant breast lesions.

STUDY DESIGN

From February 2020 to October 2020, diffusion-weighted imaging (DWI) using SMS-RS-EPI and A-ZOOMit were performed on 167 patients. Three breast radiologists independently ranked the image datasets. The inter-/intracorrelation coefficients (ICCs) of mean image quality scores and lesion conspicuity scores were calculated between these three readers. Histogram and texture features were extracted from the apparent diffusion coefficient (ADC) maps, respectively, based on a WL analysis. Student's t-tests, one-way ANOVAs, Mann-Whitney U tests, and receiver operating characteristic curves were used for statistical analysis.

RESULTS

The overall image quality scores and lesion conspicuity scores for A-ZOOMit and SMS-RS-EPI showed statistically significant differences (4.92 ± 0.27 . 3.92 ± 0.42 and 4.93 ± 0.29 . 3.87 ± 0.47, < 0.0001). The ICCs for the image quality and lesion conspicuity scores had good agreements among the three readers (all ICCs >0.75). To differentiate benign and malignant breast lesions, the entropy of ADC had the highest area (0.78) under the ROC curve.

CONCLUSIONS

A-ZOOMit achieved higher image quality and lesion conspicuity than SMS-RS-EPI. Entropy based on A-ZOOMit is recommended for differentiating benign from malignant breast lesions.

摘要

目的

研究高级 ZOOMit(A-ZOOMit)和同时多切片读出分段回波平面成像(SMS-RS-EPI)的全病变直方图和纹理分析在鉴别乳腺良恶性病变方面的图像质量和诊断能力。

研究设计

2020 年 2 月至 2020 年 10 月,对 167 例患者进行了使用 SMS-RS-EPI 和 A-ZOOMit 的扩散加权成像(DWI)。三位乳腺放射科医生独立对图像数据集进行排名。计算这三位读者之间平均图像质量得分和病变清晰度得分的组间/组内相关系数(ICC)。基于全病变(WL)分析,分别从表观扩散系数(ADC)图中提取直方图和纹理特征。采用学生 t 检验、单因素方差分析、曼-惠特尼 U 检验和受试者操作特征曲线进行统计分析。

结果

A-ZOOMit 和 SMS-RS-EPI 的总体图像质量得分和病变清晰度得分显示出统计学显著差异(4.92±0.27. 3.92±0.42 和 4.93±0.29. 3.87±0.47,<0.0001)。图像质量和病变清晰度得分的 ICC 在三位读者之间具有良好的一致性(所有 ICC>0.75)。为了鉴别乳腺良恶性病变,ADC 的熵在 ROC 曲线下面积最高(0.78)。

结论

A-ZOOMit 比 SMS-RS-EPI 具有更高的图像质量和病变清晰度。建议使用基于 A-ZOOMit 的熵来鉴别乳腺良恶性病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/9411810/407796720a3a/fonc-12-913072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验