Suppr超能文献

气溶胶直接效应影响二次无机气溶胶形成的途径。

The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation.

作者信息

Wang Jiandong, Xing Jia, Wang Shuxiao, Mathur Rohit, Wang Jiaping, Zhang Yuqiang, Liu Chao, Pleim Jonathan, Ding Dian, Chang Xing, Jiang Jingkun, Zhao Peng, Sahu Shovan Kumar, Jin Yuzhi, Wong David C, Hao Jiming

机构信息

Key Laboratory of Aerosol and Cloud Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.

出版信息

Atmos Chem Phys. 2022 Apr 20;22(8):5147-5156. doi: 10.5194/acp-22-5147-2022.

Abstract

Airborne aerosols reduce surface solar radiation through light scattering and absorption (aerosol direct effects, ADEs), influence regional meteorology, and further affect atmospheric chemical reactions and aerosol concentrations. The inhibition of turbulence and the strengthened atmospheric stability induced by ADEs increases surface primary aerosol concentration, but the pathway of ADE impacts on secondary aerosol is still unclear. In this study, the online coupled meteorological and chemistry model (WRF-CMAQ; Weather Research and Forecasting-Community Multiscale Air Quality) with integrated process analysis was applied to explore how ADEs affect secondary aerosol formation through changes in atmospheric dynamics and photolysis processes. The meteorological condition and air quality in the Jing-Jin-Ji area (denoted JJJ, including Beijing, Tianjin, and Hebei Province in China) in January and July 2013 were simulated to represent winter and summer conditions, respectively. Our results show that ADEs through the photolysis pathway inhibit sulfate formation during winter in the JJJ region and promote sulfate formation in July. The differences are attributed to the alteration of effective actinic flux affected by single-scattering albedo (SSA). ADEs through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter. ADEs through dynamics traps formed sulfate within the planetary boundary layer (PBL) which increases sulfate concentration in winter. Meanwhile, the impact of ADEs through dynamics is mainly reflected in the increase of gaseous-precursor concentrations within the PBL which enhances secondary aerosol formation in summer. For nitrate, reduced upward transport of precursors restrains the formation at high altitude and eventually lowers the nitrate concentration within the PBL in winter, while such weakened vertical transport of precursors increases nitrate concentration within the PBL in summer, since nitrate is mainly formed near the surface ground.

摘要

大气气溶胶通过光散射和吸收降低地表太阳辐射(气溶胶直接效应,ADEs),影响区域气象,进而影响大气化学反应和气溶胶浓度。ADEs引起的湍流抑制和大气稳定性增强会增加地表一次气溶胶浓度,但ADEs对二次气溶胶的影响途径仍不明确。在本研究中,应用具有综合过程分析的在线耦合气象和化学模型(WRF-CMAQ;天气研究与预报-社区多尺度空气质量模型),以探究ADEs如何通过大气动力学和光解过程的变化影响二次气溶胶的形成。分别模拟了2013年1月和7月京津冀地区(简称JJJ,包括中国的北京、天津和河北省)的气象条件和空气质量,以代表冬季和夏季的情况。我们的结果表明,通过光解途径的ADEs在冬季抑制了JJJ地区硫酸盐的形成,而在7月促进了硫酸盐的形成。这些差异归因于受单次散射反照率(SSA)影响的有效光化通量的改变。在影响夏季和冬季的二次气溶胶浓度方面,通过动力学途径的ADEs与光解途径相比,是同等重要甚至更重要的途径。通过动力学途径的ADEs在行星边界层(PBL)内捕获了硫酸盐,这增加了冬季的硫酸盐浓度。同时,通过动力学途径的ADEs的影响主要体现在PBL内气态前体浓度的增加,这增强了夏季二次气溶胶的形成。对于硝酸盐,前体向上传输的减少抑制了冬季高海拔处的形成,并最终降低了PBL内的硝酸盐浓度,而这种前体垂直传输的减弱在夏季增加了PBL内的硝酸盐浓度,因为硝酸盐主要在地表附近形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验