Huang Xin, Ding Aijun
School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China.
School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China.
Sci Bull (Beijing). 2021 Sep 30;66(18):1917-1924. doi: 10.1016/j.scib.2021.05.009. Epub 2021 May 14.
Weather prediction is essential to the daily life of human beings. Current numerical weather prediction models such as the Global Forecast System (GFS) are still subject to substantial forecast biases and rarely consider the impact of atmospheric aerosol, despite the consensus that aerosol is one of the most important sources of uncertainty in the climate system. Here we demonstrate that atmospheric aerosol is one of the important drivers biasing daily temperature prediction. By comparing observations and the GFS prediction, we find that the monthly-averaged bias in the 24-h temperature forecast varies between ± 1.5 °C in regions influenced by atmospheric aerosol. The biases depend on the properties of aerosol, the underlying land surface, and aerosol-cloud interactions over oceans. It is also revealed that forecast errors are rapidly magnified over time in regions featuring high aerosol loadings. Our study provides direct "observational" evidence of aerosol's impacts on daily weather forecast, and bridges the gaps between the weather forecast and climate science regarding the understanding of the impact of atmospheric aerosol.
天气预报对人类的日常生活至关重要。当前的数值天气预报模型,如全球预报系统(GFS),仍然存在较大的预报偏差,并且很少考虑大气气溶胶的影响,尽管人们普遍认为气溶胶是气候系统中最重要的不确定性来源之一。在此,我们证明大气气溶胶是导致每日气温预报偏差的重要驱动因素之一。通过比较观测数据和GFS预报,我们发现,在受大气气溶胶影响的地区,24小时气温预报的月平均偏差在±1.5°C之间变化。这些偏差取决于气溶胶的特性、下层陆地表面以及海洋上的气溶胶-云相互作用。研究还表明,在气溶胶负荷较高的地区,预报误差会随着时间迅速放大。我们的研究提供了气溶胶对每日天气预报影响的直接“观测”证据,并弥合了天气预报和气候科学在理解大气气溶胶影响方面的差距。