Suppr超能文献

预测 ICU 中肥胖脓毒症患者住院时间延长的列线图:对预测性、个性化、预防性和参与性医疗保健策略的相关性。

A nomogram to predict prolonged stay of obesity patients with sepsis in ICU: Relevancy for predictive, personalized, preventive, and participatory healthcare strategies.

机构信息

Department of Intensive Care Medicine, Affiliated Hospital of Southwest Jiaotong University/The Third People's Hospital of Chengdu, Chengdu, China.

出版信息

Front Public Health. 2022 Aug 11;10:944790. doi: 10.3389/fpubh.2022.944790. eCollection 2022.

Abstract

OBJECTIVE

In an era of increasingly expensive intensive care costs, it is essential to evaluate early whether the length of stay (LOS) in the intensive care unit (ICU) of obesity patients with sepsis will be prolonged. On the one hand, it can reduce costs; on the other hand, it can reduce nosocomial infection. Therefore, this study aimed to verify whether ICU prolonged LOS was significantly associated with poor prognosis poor in obesity patients with sepsis and develop a simple prediction model to personalize the risk of ICU prolonged LOS for obesity patients with sepsis.

METHOD

In total, 14,483 patients from the eICU Collaborative Research Database were randomized to the training set (3,606 patients) and validation set (1,600 patients). The potential predictors of ICU prolonged LOS among various factors were identified using logistic regression analysis. For internal and external validation, a nomogram was developed and performed.

RESULTS

ICU prolonged LOS was defined as the third quartile of ICU LOS or more for all sepsis patients and demonstrated to be significantly associated with the mortality in ICU by logistic regression analysis. When entering the ICU, seven independent risk factors were identified: maximum white blood cell, minimum white blood cell, use of ventilation, Glasgow Coma Scale, minimum albumin, maximum respiratory rate, and minimum red blood cell distribution width. In the internal validation set, the area under the curve was 0.73, while in the external validation set, it was 0.78. The calibration curves showed that this model predicted probability due to actually observed probability. Furthermore, the decision curve analysis and clinical impact curve showed that the nomogram had a high clinical net benefit.

CONCLUSION

In obesity patients with sepsis, we created a novel nomogram to predict the risk of ICU prolonged LOS. This prediction model is accurate and reliable, and it can assist patients and clinicians in determining prognosis and making clinical decisions.

摘要

目的

在重症监护费用日益昂贵的时代,评估肥胖脓毒症患者 ICU 住院时间(LOS)是否延长至关重要。一方面可以降低成本,另一方面可以减少医院感染。因此,本研究旨在验证肥胖脓毒症患者 ICU 延长 LOS 是否与预后不良显著相关,并建立一个简单的预测模型,以个性化肥胖脓毒症患者 ICU 延长 LOS 的风险。

方法

从 eICU 协作研究数据库中随机抽取 14483 名患者进入训练集(3606 名患者)和验证集(1600 名患者)。使用逻辑回归分析确定各种因素中 ICU 延长 LOS 的潜在预测因素。为了内部和外部验证,开发并执行了一个列线图。

结果

ICU 延长 LOS 定义为所有脓毒症患者 ICU LOS 的第三四分位数或更高,逻辑回归分析表明与 ICU 死亡率显著相关。进入 ICU 时,确定了七个独立的风险因素:最大白细胞、最小白细胞、使用通气、格拉斯哥昏迷评分、最低白蛋白、最大呼吸频率和最小红细胞分布宽度。在内部验证集中,曲线下面积为 0.73,而在外部验证集中,曲线下面积为 0.78。校准曲线表明,该模型预测的概率与实际观察到的概率一致。此外,决策曲线分析和临床影响曲线表明,该列线图具有较高的临床净收益。

结论

在肥胖脓毒症患者中,我们创建了一个新的列线图来预测 ICU 延长 LOS 的风险。该预测模型准确可靠,可帮助患者和临床医生判断预后并做出临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3e1/9403617/c6aeeb993db4/fpubh-10-944790-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验