Suppr超能文献

外磁场诱导可生物降解丝素/磁性纳米颗粒复合膜纳米孔的形成及其在植入式给药系统中的应用

Nanopore Generation in Biodegradable Silk/Magnetic Nanoparticle Membranes by an External Magnetic Field for Implantable Drug Delivery.

机构信息

Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 519087 Zhuhai, China.

Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 7;14(35):40418-40426. doi: 10.1021/acsami.2c10603. Epub 2022 Aug 29.

Abstract

Implantable devices for localized and controlled drug release are important, e.g., for therapies of cancer and chronic pain. However, most of the existing active implants are limited by the usage of nonbiodegradable materials; thus, surgery is needed to extract them after the treatment, which leads to secondary damage. Here, we show a fully biodegradable composite membrane made from silk fibroin and magnetic nanoparticles (MNPs). The membrane porosity can be remotely modified by an alternating magnetic field, which opens nanopores by local heating of MNPs in the composite allowing a liquid to diffuse through them. The stability of the silk membrane in water can be prolonged up to several months by increasing its β-sheet content through ethanol annealing. We present the following original findings. (a) Nanopores can be generated inside the silk/MNP composite membrane by exposing it to an external alternating magnetic field. (b) A longer exposure time results in more nanopore sites. (c) The controllable release of rhodamine B dye is achieved by tuning the period of exposure to the magnetic field. The obtained results demonstrate the suitability of the investigated silk/MNP composite membrane as a potential functional material for implantable drug delivery.

摘要

用于局部和控制药物释放的植入式设备非常重要,例如,用于癌症和慢性疼痛的治疗。然而,现有的大多数主动植入物受到不可生物降解材料的使用限制;因此,在治疗后需要进行手术将其取出,这会导致二次损伤。在这里,我们展示了一种由丝素蛋白和磁性纳米颗粒(MNPs)制成的完全可生物降解的复合膜。通过交变磁场可以远程修改膜的孔隙率,通过在复合体内局部加热 MNPs 打开纳米孔,允许液体通过它们扩散。通过乙醇退火增加丝膜的 β-折叠含量,可以将其在水中的稳定性延长至数月。我们提出了以下原创发现。(a)通过将丝/MNP 复合膜暴露于外部交变磁场中,可以在其内生成纳米孔。(b)更长的暴露时间导致更多的纳米孔位。(c)通过调整暴露于磁场的时间周期,可以实现罗丹明 B 染料的可控释放。所得结果表明,所研究的丝/MNP 复合膜作为用于植入式药物输送的潜在功能材料是合适的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0af6/9460430/21f79936cdfb/am2c10603_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验