Ash Caerwyn, Dubec Michael, Donne Kelvin, Bashford Tim
School of Applied Computing, University of Wales Trinity Saint David, Swansea, SA1 6ED, UK.
The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, UK.
Lasers Med Sci. 2017 Nov;32(8):1909-1918. doi: 10.1007/s10103-017-2317-4. Epub 2017 Sep 12.
Penetration depth of ultraviolet, visible light and infrared radiation in biological tissue has not previously been adequately measured. Risk assessment of typical intense pulsed light and laser intensities, spectral characteristics and the subsequent chemical, physiological and psychological effects of such outputs on vital organs as consequence of inappropriate output use are examined. This technical note focuses on wavelength, illumination geometry and skin tone and their effect on the energy density (fluence) distribution within tissue. Monte Carlo modelling is one of the most widely used stochastic methods for the modelling of light transport in turbid biological media such as human skin. Using custom Monte Carlo simulation software of a multi-layered skin model, fluence distributions are produced for various non-ionising radiation combinations. Fluence distributions were analysed using Matlab mathematical software. Penetration depth increases with increasing wavelength with a maximum penetration depth of 5378 μm calculated. The calculations show that a 10-mm beam width produces a fluence level at target depths of 1-3 mm equal to 73-88% (depending on depth) of the fluence level at the same depths produced by an infinitely wide beam of equal incident fluence. Meaning little additional penetration is achieved with larger spot sizes. Fluence distribution within tissue and thus the treatment efficacy depends upon the illumination geometry and wavelength. To optimise therapeutic techniques, light-tissue interactions must be thoroughly understood and can be greatly supported by the use of mathematical modelling techniques.
紫外线、可见光和红外线在生物组织中的穿透深度此前尚未得到充分测量。本文研究了典型强脉冲光和激光强度、光谱特性以及因不当使用输出而对重要器官产生的后续化学、生理和心理影响的风险评估。本技术说明重点关注波长、照明几何形状和肤色及其对组织内能量密度(通量)分布的影响。蒙特卡罗建模是用于模拟光在诸如人体皮肤等浑浊生物介质中传输的最广泛使用的随机方法之一。使用多层皮肤模型的定制蒙特卡罗模拟软件,可生成各种非电离辐射组合的通量分布。使用Matlab数学软件分析通量分布。穿透深度随波长增加而增加,计算得出的最大穿透深度为5378μm。计算表明,10毫米的光束宽度在目标深度1 - 3毫米处产生的通量水平等于相同入射通量的无限宽光束在相同深度产生的通量水平的73 - 88%(取决于深度)。这意味着较大光斑尺寸几乎不会增加穿透深度。组织内的通量分布以及治疗效果取决于照明几何形状和波长。为了优化治疗技术,必须透彻理解光与组织的相互作用,并且数学建模技术的使用可以极大地支持这一点。