Huang He, Wang Hao, Li Shasha, Jiang Jingyao, Liu Yi, Cai Mingyang, Shao Lei, Chen Huanjun, Wang Jianfang
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China.
ACS Nano. 2022 Sep 27;16(9):14874-14884. doi: 10.1021/acsnano.2c05769. Epub 2022 Aug 29.
The increasing demand for compact and high-performance photonic devices drives the development of optical resonators with nanoscale sizes and ultrahigh quality factors. Fabry-Pérot (FP) resonators, the most widely employed optical resonators, can support ultrahigh quality factors in the simple structure, which is particularly attractive for applications in lasers, filters, and ultrasensitive sensors. However, the construction of FP resonators with both nanoscale sizes and high quality factors has still faced challenges. Herein we demonstrate the construction of FP nanoresonators out of single Au nanodisks (NDs) and a Au film, with a WS flake sandwiched in between. The atomically flat surfaces of the WS flake and Au NDs benefit mirror alignment and boost the quality factor up to 76. The nanoresonators can support FP resonances with different mode orders in the visible region. The optical properties and formation mechanisms of the high-quality FP modes are systematically studied. The FP modes are further hybridized with excitons in the WS flake spacer, enabling the modulation of the WS indirect band gap emissions. Our study combines the advantages of plasmonic nanoparticles and FP resonators, providing a promising platform for the development of compact nanophotonic devices such as tunable nanolasers, smart sensors, and photonic-circuit elements.
对紧凑且高性能光子器件日益增长的需求推动了具有纳米级尺寸和超高品质因数的光学谐振器的发展。法布里 - 珀罗(FP)谐振器是应用最为广泛的光学谐振器,其简单结构能够支持超高品质因数,这对于激光、滤波器和超灵敏传感器应用而言极具吸引力。然而,构建兼具纳米级尺寸和高品质因数的FP谐振器仍面临挑战。在此,我们展示了由单个金纳米盘(NDs)和金膜构建的FP纳米谐振器,中间夹有一片WS薄片。WS薄片和金纳米盘的原子级平整表面有利于镜面校准,并将品质因数提高到76。该纳米谐振器能够在可见光区域支持不同模式阶次的FP共振。我们系统地研究了高品质FP模式的光学性质和形成机制。FP模式进一步与WS薄片间隔层中的激子发生杂化,从而实现对WS间接带隙发射的调制。我们的研究结合了等离子体纳米颗粒和FP谐振器的优势,为开发诸如可调谐纳米激光器、智能传感器和光子电路元件等紧凑纳米光子器件提供了一个有前景的平台。