Suppr超能文献

基于磁共振成像的人工智能架构在颞下颌关节紊乱病中的分类。

Classifying Temporomandibular Disorder with Artificial Intelligent Architecture Using Magnetic Resonance Imaging.

机构信息

Institute of Biophotonics, National Yang Ming Chiao Tung University, No.155, Section 2, Li-Nong Street, Beitou District, 11221, Taipei, Taiwan.

Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan.

出版信息

Ann Biomed Eng. 2023 Mar;51(3):517-526. doi: 10.1007/s10439-022-03056-2. Epub 2022 Aug 29.

Abstract

This study proposes a new diagnostic tool for automatically extracting discriminative features and detecting temporomandibular joint disc displacement (TMJDD) accurately with artificial intelligence. We analyzed the structural magnetic resonance imaging (MRI) images of 52 patients with TMJDD and 32 healthy controls. The data were split into training and test sets, and only the training sets were used for model construction. U-net was trained with 100 sagittal MRI images of the TMJ to detect the joint cavity between the temporal bone and the mandibular condyle, which was used as the region of interest, and classify the images into binary categories using four convolutional neural networks: InceptionResNetV2, InceptionV3, DenseNet169, and VGG16. The best models were InceptionV3 and DenseNet169; the results of InceptionV3 for recall, precision, accuracy, and F1 score were 1, 0.81, 0.85, and 0.9, respectively, and the corresponding results of DenseNet169 were 0.92, 0.86, 0.85, and 0.89, respectively. Automated detection of TMJDD from sagittal MRI images is a promising technique that involves using deep learning neural networks. It can be used to support clinicians in diagnosing patients as having TMJDD.

摘要

本研究提出了一种新的诊断工具,利用人工智能自动提取有鉴别力的特征并准确检测颞下颌关节盘移位(TMJDD)。我们分析了 52 例 TMJDD 患者和 32 例健康对照者的结构磁共振成像(MRI)图像。数据分为训练集和测试集,仅使用训练集进行模型构建。U-net 使用 100 张颞下颌关节矢状 MRI 图像进行训练,以检测颞骨和下颌骨之间的关节腔,作为感兴趣区域,并使用四个卷积神经网络(InceptionResNetV2、InceptionV3、DenseNet169 和 VGG16)将图像分类为二进制类别。最佳模型为 InceptionV3 和 DenseNet169;InceptionV3 的召回率、精度、准确性和 F1 得分为 1、0.81、0.85 和 0.9,而 DenseNet169 的对应值分别为 0.92、0.86、0.85 和 0.89。从矢状 MRI 图像自动检测 TMJDD 是一种很有前途的技术,涉及使用深度学习神经网络。它可以用于支持临床医生诊断患者是否患有 TMJDD。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验