Suppr超能文献

利用 2012-2017 年常规卫生数据描述和建模加纳肿瘤患者住院负担。

Describing and Modeling the Burden of Hospitalization of Patients With Neoplasms in Ghana Using Routine Health Data for 2012-2017.

机构信息

Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.

School of Public Health, University of Health and Allied Sciences, Ho, Ghana.

出版信息

JCO Glob Oncol. 2022 Aug;8:e2100416. doi: 10.1200/GO.21.00416.

Abstract

PURPOSE

The increasing cancer burden calls for reliable data on current and future associated hospitalizations to enable health care resource planning, especially in low- and middle-income countries. We provide nationwide estimates of the current and future burden of hospitalization because of neoplasms in Ghana.

METHODS

We conducted secondary data (2012-2017) analysis using nationwide routine administrative inpatient health data from the Ghana Health Service. Multivariable Poisson regression was used to model spatial and temporal hospitalization trends stratified by sex and 5-year age group. In conjunction with official population projections, the model was used to predict future hospitalization up to 2032.

RESULTS

Out of 2,915,936 hospitalization records extracted for 6 years, 26,627 (1.0%) were for neoplasms, most of them benign (D10-D36, 15,362; 57.7%) and in female patients (20,159; 76%). In total, 9,463 (35.5%) patients with malignancies were mostly female (5,307; 56.1%), had a median age 50 years (interquartile range, 34-66 years) and a median duration of stay of 4 days (interquartile range, 2-8 days). Poisson regression for the malignant cancers revealed an annual increase in hospitalizations with a relative rate of 1.23 (95% CI, 1.19 to 1.27). The estimated hospitalization rate for malignancies of female patients was 1.5 times higher than that of male patients (relative rate, 1.53; 95% CI, 1.00 to 2.34), adjusted for age. We predicted an increase of 67.5% malignant cancer hospitalizations from the empirical years (2012-2017) into the prediction years (2022-2032) in Ghana.

CONCLUSION

In the absence of a national population-based cancer registry, this nationwide study used secondary health services data on hospitalizations as a proxy for neoplasm morbidity burden. Our results can support planning public health resources and building evidence-based advocacy campaigns for neoplasm-prevention efforts.

摘要

目的

癌症负担不断增加,需要可靠的数据来了解当前和未来与癌症相关的住院情况,以便进行医疗保健资源规划,尤其是在中低收入国家。我们提供了加纳全国范围内当前和未来因肿瘤而住院的负担估计。

方法

我们使用加纳卫生服务部门的全国性常规行政住院医疗数据进行二次数据分析。使用多变量泊松回归模型对按性别和 5 岁年龄组分层的住院时间和趋势进行建模。结合官方人口预测,该模型用于预测 2032 年之前的未来住院情况。

结果

在提取的 6 年 2915936 例住院记录中,有 26627 例(1.0%)是因肿瘤,其中大部分为良性肿瘤(D10-D36,15362 例;57.7%),且患者为女性(20159 例;76.1%)。总的来说,9463 例恶性肿瘤患者中,女性居多(5307 例;56.1%),中位年龄为 50 岁(四分位距,34-66 岁),中位住院时间为 4 天(四分位距,2-8 天)。对恶性癌症的泊松回归显示,住院人数呈逐年增加趋势,相对比率为 1.23(95%置信区间,1.19-1.27)。女性恶性肿瘤患者的住院率是男性患者的 1.5 倍(相对比率,1.53;95%置信区间,1.00-2.34),经年龄调整后。我们预测,加纳从实证年份(2012-2017 年)到预测年份(2022-2032 年)的恶性癌症住院人数将增加 67.5%。

结论

在缺乏全国性基于人群的癌症登记的情况下,本项全国性研究使用了关于住院情况的二级卫生服务数据来替代肿瘤发病负担。我们的研究结果可以为规划公共卫生资源和开展基于证据的倡导活动提供支持,以促进肿瘤预防工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/948b/9470136/ae3e189d3a88/go-8-e2100416-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验