Suppr超能文献

智能手机触摸屏交互中捕捉到的与年龄相关行为改变的时间簇。

Temporal clusters of age-related behavioral alterations captured in smartphone touchscreen interactions.

作者信息

Ceolini Enea, Kock Ruchella, Band Guido P H, Stoet Gijsbert, Ghosh Arko

机构信息

Cognitive Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, Leiden 2333 AK, the Netherlands.

Department of Psychology, University of Essex, Colchester, UK.

出版信息

iScience. 2022 Aug 5;25(8):104791. doi: 10.1016/j.isci.2022.104791. eCollection 2022 Aug 19.

Abstract

Smartphones touchscreen interactions may help resolve if and how real-world behavioral dynamics are shaped by aging. Here, in a sample spanning the adult life span (16 to 86 years, N = 598, accumulating 355 million interactions), we clustered the smartphone interactions according to their next inter-touch interval dynamics. There were age-related behavioral losses at the clusters occupying short intervals (∼100 ms, R ∼ 0.8) but gains at the long intervals (∼4 s, R ∼ 0.4). Our approach revealed a sophisticated form of behavioral aging where individuals simultaneously demonstrated accelerated aging in one behavioral cluster versus a deceleration in another. Contrary to the common notion of a simple behavioral decline with age based on conventional cognitive tests, we show that the nature of aging systematically varies according to the underlying dynamics. Of all the imaginable factors determining smartphone interactions, age-sensitive cognitive and behavioral processes may dominatingly shape smartphone dynamics.

摘要

智能手机的触摸屏交互可能有助于解决现实世界中的行为动态是否以及如何受到衰老影响的问题。在此,我们对一个涵盖成年期(16至86岁,N = 598,累积3.55亿次交互)的样本进行研究,根据智能手机交互的下一次触摸间隔动态对其进行聚类。在短间隔(约100毫秒,相关系数R约为0.8)的聚类中存在与年龄相关的行为损失,但在长间隔(约4秒,相关系数R约为0.4)的聚类中存在行为增益。我们的研究方法揭示了一种复杂的行为衰老形式,即个体在一个行为聚类中同时表现出加速衰老,而在另一个聚类中表现出减速衰老。与基于传统认知测试的随着年龄增长行为简单衰退的普遍观念相反,我们表明衰老的本质会根据潜在动态系统地变化。在所有决定智能手机交互的可想象因素中,对年龄敏感的认知和行为过程可能在很大程度上塑造了智能手机动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d3/9418599/e544fe4464bf/fx1.jpg

相似文献

1
Temporal clusters of age-related behavioral alterations captured in smartphone touchscreen interactions.
iScience. 2022 Aug 5;25(8):104791. doi: 10.1016/j.isci.2022.104791. eCollection 2022 Aug 19.
2
A model of healthy aging based on smartphone interactions reveals advanced behavioral age in neurological disease.
iScience. 2022 Aug 5;25(8):104792. doi: 10.1016/j.isci.2022.104792. eCollection 2022 Aug 19.
3
Age-related behavioral resilience in smartphone touchscreen interaction dynamics.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2311865121. doi: 10.1073/pnas.2311865121. Epub 2024 Jun 11.
4
Real-world smartphone data can trace the behavioural impact of epilepsy: A case study.
Eur J Neurol. 2024 Dec;31(12):e16433. doi: 10.1111/ene.16433. Epub 2024 Aug 7.
5
Interaction with touchscreen smartphones in patients with essential tremor and healthy individuals.
Neurologia (Engl Ed). 2021 Nov-Dec;36(9):657-665. doi: 10.1016/j.nrleng.2018.05.009. Epub 2018 Dec 11.
6
The details of past actions on a smartphone touchscreen are reflected by intrinsic sensorimotor dynamics.
NPJ Digit Med. 2018 Mar 7;1:4. doi: 10.1038/s41746-017-0011-3. eCollection 2018.
7
Large cognitive fluctuations surrounding sleep in daily living.
iScience. 2021 Feb 7;24(3):102159. doi: 10.1016/j.isci.2021.102159. eCollection 2021 Mar 19.
8
Interaction with touchscreen smartphones in patients with essential tremor and healthy individuals.
Neurologia (Engl Ed). 2018 Aug 10. doi: 10.1016/j.nrl.2018.05.005.
10
Generalized priority-based model for smartphone screen touches.
Phys Rev E. 2020 Jul;102(1-1):012307. doi: 10.1103/PhysRevE.102.012307.

引用本文的文献

1
Real-world smartphone data can trace the behavioural impact of epilepsy: A case study.
Eur J Neurol. 2024 Dec;31(12):e16433. doi: 10.1111/ene.16433. Epub 2024 Aug 7.
2
Age-related behavioral resilience in smartphone touchscreen interaction dynamics.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2311865121. doi: 10.1073/pnas.2311865121. Epub 2024 Jun 11.
4
Common multi-day rhythms in smartphone behavior.
NPJ Digit Med. 2023 Mar 23;6(1):49. doi: 10.1038/s41746-023-00799-7.
6
A model of healthy aging based on smartphone interactions reveals advanced behavioral age in neurological disease.
iScience. 2022 Aug 5;25(8):104792. doi: 10.1016/j.isci.2022.104792. eCollection 2022 Aug 19.

本文引用的文献

1
Evidence that ageing yields improvements as well as declines across attention and executive functions.
Nat Hum Behav. 2022 Jan;6(1):97-110. doi: 10.1038/s41562-021-01169-7. Epub 2021 Aug 19.
2
Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy.
iScience. 2021 May 13;24(6):102538. doi: 10.1016/j.isci.2021.102538. eCollection 2021 Jun 25.
3
Striatal dopamine synthesis capacity reflects smartphone social activity.
iScience. 2021 May 2;24(5):102497. doi: 10.1016/j.isci.2021.102497. eCollection 2021 May 21.
4
Large cognitive fluctuations surrounding sleep in daily living.
iScience. 2021 Feb 7;24(3):102159. doi: 10.1016/j.isci.2021.102159. eCollection 2021 Mar 19.
5
Dutch Brain Research Registry for study participant recruitment: Design and first results.
Alzheimers Dement (N Y). 2021 Feb 14;7(1):e12132. doi: 10.1002/trc2.12132. eCollection 2021.
6
Cognitive and behavioural flexibility: neural mechanisms and clinical considerations.
Nat Rev Neurosci. 2021 Mar;22(3):167-179. doi: 10.1038/s41583-021-00428-w. Epub 2021 Feb 3.
7
Generalized priority-based model for smartphone screen touches.
Phys Rev E. 2020 Jul;102(1-1):012307. doi: 10.1103/PhysRevE.102.012307.
9
Accelerated epigenetic age and cognitive decline among urban-dwelling adults.
Neurology. 2020 Feb 11;94(6):e613-e625. doi: 10.1212/WNL.0000000000008756. Epub 2019 Dec 26.
10
Capturing sleep-wake cycles by using day-to-day smartphone touchscreen interactions.
NPJ Digit Med. 2019 Jul 29;2:73. doi: 10.1038/s41746-019-0147-4. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验