Suppr超能文献

年龄相关的智能手机触摸屏交互动力学中的行为恢复力。

Age-related behavioral resilience in smartphone touchscreen interaction dynamics.

机构信息

Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands.

QuantActions, Zurich 8001, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2311865121. doi: 10.1073/pnas.2311865121. Epub 2024 Jun 11.

Abstract

We experience a life that is full of ups and downs. The ability to bounce back after adverse life events such as the loss of a loved one or serious illness declines with age, and such isolated events can even trigger accelerated aging. How humans respond to common day-to-day perturbations is less clear. Here, we infer the aging status from smartphone behavior by using a decision tree regression model trained to accurately estimate the chronological age based on the dynamics of touchscreen interactions. Individuals (N = 280, 21 to 87 y of age) expressed smartphone behavior that appeared younger on certain days and older on other days through the observation period that lasted up to ~4 y. We captured the essence of these fluctuations by leveraging the mathematical concept of critical transitions and tipping points in complex systems. In most individuals, we find one or more alternative stable aging states separated by tipping points. The older the individual, the lower the resilience to forces that push the behavior across the tipping point into an older state. Traditional accounts of aging based on sparse longitudinal data spanning decades suggest a gradual behavioral decline with age. Taken together with our current results, we propose that the gradual age-related changes are interleaved with more complex dynamics at shorter timescales where the same individual may navigate distinct behavioral aging states from one day to the next. Real-world behavioral data modeled as a complex system can transform how we view and study aging.

摘要

我们经历着充满起伏的人生。在遭遇亲人离世或身患重病等逆境后,从逆境中恢复的能力会随年龄增长而下降,此类孤立事件甚至可能引发加速衰老。而对于日常生活中的常见波动,人类的反应如何则不太清楚。在这里,我们通过使用决策树回归模型来推断衰老状态,该模型经过训练,可以根据触摸屏交互的动态准确估计实际年龄。在长达约 4 年的观察期内,个体(N = 280,年龄 21 至 87 岁)表现出了在某些天看起来更年轻、而在其他天看起来更老的智能手机行为。我们通过利用复杂系统中的临界点和 tipping 点的数学概念来捕捉这些波动的本质。在大多数个体中,我们发现一个或多个由 tipping 点分隔的替代稳定衰老状态。个体年龄越大,行为越过 tipping 点进入更老状态的阻力就越低。基于几十年稀疏纵向数据的传统衰老理论认为,随着年龄的增长,行为会逐渐下降。结合我们目前的研究结果,我们提出,随着时间的推移,与年龄相关的逐渐变化会与更复杂的动态相互交织,在这些动态中,同一个体可能会在一天到下一天之间经历不同的行为衰老状态。将现实世界中的行为数据建模为复杂系统,可以改变我们看待和研究衰老的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7336/11194488/f2b234bf754c/pnas.2311865121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验