Suppr超能文献

日常生活中围绕睡眠出现的较大认知波动。

Large cognitive fluctuations surrounding sleep in daily living.

作者信息

Huber Reto, Ghosh Arko

机构信息

Child Development Center, University Children's Hospital Zurich, Switzerland & Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital University of Zurich, Switzerland.

Institute of Psychology, Cognitive Psychology Unit, Leiden University, Wassenaarseweg 52, Leiden 2333 AK, the Netherlands.

出版信息

iScience. 2021 Feb 7;24(3):102159. doi: 10.1016/j.isci.2021.102159. eCollection 2021 Mar 19.

Abstract

Cognitive output and physical activity levels fluctuate surrounding sleep. The ubiquitous digitization of behavior via smartphones is a promising avenue for addressing how these fluctuations occur in daily living. Here, we logged smartphone touchscreen interactions to proxy cognitive fluctuations and contrasted these to physical activity patterns logged on wrist-worn actigraphy. We found that both cognitive and physical activities were dominated by diurnal (∼24 h) and infra-radian (∼7 days) rhythms. The proxy measures of cognitive performance-tapping speed, unlocking speed, and app locating speed-contained lower-powered diurnal rhythm than physical activity. The difference between cognitive and physical activity was vivid during bedtime as people continued to interact with their smartphones at physical rest. The cognitive performance measures in this period were worse than those in the hour before or after bedtime. We suggest that the rhythms underlying cognitive activity in the real world are distinct from those underlying physical activity, and this discord may be a hallmark of modern human behavior.

摘要

认知输出和身体活动水平在睡眠前后会发生波动。通过智能手机对行为进行普遍的数字化记录,是研究这些波动在日常生活中如何发生的一个很有前景的途径。在这里,我们记录了智能手机触摸屏交互情况来代表认知波动,并将其与手腕佩戴的活动记录仪记录的身体活动模式进行对比。我们发现,认知活动和身体活动都受昼夜(约24小时)和超日节律(约7天)的支配。认知表现的代理指标——点击速度、解锁速度和应用定位速度——所含的昼夜节律能量低于身体活动。在就寝时间,认知活动和身体活动的差异很明显,因为人们在身体休息时仍继续与智能手机互动。这一时期的认知表现指标比就寝前或就寝后的一小时更差。我们认为,现实世界中认知活动的节律与身体活动的节律不同,这种不一致可能是现代人类行为的一个标志。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae14/7918275/6523570d91b7/fx1.jpg

相似文献

1
Large cognitive fluctuations surrounding sleep in daily living.
iScience. 2021 Feb 7;24(3):102159. doi: 10.1016/j.isci.2021.102159. eCollection 2021 Mar 19.
2
Capturing sleep-wake cycles by using day-to-day smartphone touchscreen interactions.
NPJ Digit Med. 2019 Jul 29;2:73. doi: 10.1038/s41746-019-0147-4. eCollection 2019.
3
Zeitgebers and their association with rest-activity patterns.
Chronobiol Int. 2019 Feb;36(2):203-213. doi: 10.1080/07420528.2018.1527347. Epub 2018 Oct 26.
6
24-h activity rhythm and sleep in depressed outpatients.
J Psychiatr Res. 2016 Jun;77:27-34. doi: 10.1016/j.jpsychires.2016.02.022. Epub 2016 Mar 2.
8
Wearable Monitoring of Physical Functioning and Disability Changes, Circadian Rhythms and Sleep Patterns in Nursing Home Residents.
IEEE J Biomed Health Inform. 2016 May;20(3):856-864. doi: 10.1109/JBHI.2015.2420680. Epub 2015 Apr 7.
9
Circadian rest-activity rhythms in demented and nondemented older community residents and their caregivers.
J Am Geriatr Soc. 1997 Apr;45(4):446-52. doi: 10.1111/j.1532-5415.1997.tb05169.x.

引用本文的文献

1
Age-related behavioral resilience in smartphone touchscreen interaction dynamics.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2311865121. doi: 10.1073/pnas.2311865121. Epub 2024 Jun 11.
4
Common multi-day rhythms in smartphone behavior.
NPJ Digit Med. 2023 Mar 23;6(1):49. doi: 10.1038/s41746-023-00799-7.
5
A model of healthy aging based on smartphone interactions reveals advanced behavioral age in neurological disease.
iScience. 2022 Aug 5;25(8):104792. doi: 10.1016/j.isci.2022.104792. eCollection 2022 Aug 19.
6
Temporal clusters of age-related behavioral alterations captured in smartphone touchscreen interactions.
iScience. 2022 Aug 5;25(8):104791. doi: 10.1016/j.isci.2022.104791. eCollection 2022 Aug 19.
7
Disentangling personalized treatment effects from "time-of-the-day" confounding in mobile health studies.
PLoS One. 2022 Aug 4;17(8):e0271766. doi: 10.1371/journal.pone.0271766. eCollection 2022.
8
Spontaneous motor tempo over the course of a week: the role of the time of the day, chronotype, and arousal.
Psychol Res. 2023 Feb;87(1):327-338. doi: 10.1007/s00426-022-01646-2. Epub 2022 Feb 6.
9
Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy.
iScience. 2021 May 13;24(6):102538. doi: 10.1016/j.isci.2021.102538. eCollection 2021 Jun 25.

本文引用的文献

1
Association of Circadian Abnormalities in Older Adults With an Increased Risk of Developing Parkinson Disease.
JAMA Neurol. 2020 Oct 1;77(10):1270-1278. doi: 10.1001/jamaneurol.2020.1623.
3
Population-scale hand tremor analysis via anonymized mouse cursor signals.
NPJ Digit Med. 2019 Sep 24;2:93. doi: 10.1038/s41746-019-0171-4. eCollection 2019.
4
Capturing sleep-wake cycles by using day-to-day smartphone touchscreen interactions.
NPJ Digit Med. 2019 Jul 29;2:73. doi: 10.1038/s41746-019-0147-4. eCollection 2019.
5
The details of past actions on a smartphone touchscreen are reflected by intrinsic sensorimotor dynamics.
NPJ Digit Med. 2018 Mar 7;1:4. doi: 10.1038/s41746-017-0011-3. eCollection 2018.
6
Circadian rhythms and exercise - re-setting the clock in metabolic disease.
Nat Rev Endocrinol. 2019 Apr;15(4):197-206. doi: 10.1038/s41574-018-0150-x.
7
Digital Phenotyping: Technology for a New Science of Behavior.
JAMA. 2017 Oct 3;318(13):1215-1216. doi: 10.1001/jama.2017.11295.
9
Timing of light exposure affects mood and brain circuits.
Transl Psychiatry. 2017 Jan 31;7(1):e1017. doi: 10.1038/tp.2016.262.
10
The two-process model of sleep regulation: a reappraisal.
J Sleep Res. 2016 Apr;25(2):131-43. doi: 10.1111/jsr.12371. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验