Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
Soft Matter. 2022 Sep 14;18(35):6550-6560. doi: 10.1039/d2sm00921h.
The α-helix has a significant role in protein function and structure because of its rigidity. In this study, we investigate the persistence length, , of α-helical poly-L-lysine, PLL, for two molecular weights. PLL experiences a random coil-helix transition as the pH is raised from 7 to 12. Using light scattering experiments to determine the radius of gyration (), hydrodynamic radius, (), the shape factor (/), and second virial coefficient (), and circular dichroism to determine the helical content, we find the structure and of PLL as a function of pH (7.4-11.4) and ionic strength (100-166 mM). With increasing pH, we find an increase in from 2 nm to 15-21 nm because of α-helix formation. We performed dissipative particle dynamics (DPD) simulations and found a similar increase in . While this is less than that predicted by molecular dynamics simulations, it is consistent with other experimental results, which quantify the mechanics of α-helices. By determining the mechanics of helical polypeptides like PLL, we can further understand their implications to protein function.
α-螺旋在蛋白质功能和结构中起着重要作用,因为它具有刚性。在这项研究中,我们研究了两种分子量的聚 L-赖氨酸(PLL)的无规卷曲-螺旋转变的持久长度()。当 pH 值从 7 升高到 12 时,PLL 会经历一个无规卷曲-螺旋转变。我们使用光散射实验来确定回转半径()、水动力半径()、形状因子(/)和第二维里系数(),以及圆二色性来确定螺旋含量,从而确定 PLL 的结构和作为 pH 值(7.4-11.4)和离子强度(100-166 mM)的函数。随着 pH 值的增加,我们发现由于α-螺旋的形成,从 2nm 增加到 15-21nm。我们进行了耗散粒子动力学(DPD)模拟,发现也有类似的增加。虽然这个值小于分子动力学模拟预测的值,但它与其他实验结果一致,这些结果量化了α-螺旋的力学性质。通过确定像 PLL 这样的螺旋多肽的力学性质,我们可以进一步了解它们对蛋白质功能的影响。