Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
School of Engineering, Westlake University, Hangzhou, China.
Nat Mater. 2024 Nov;23(11):1539-1546. doi: 10.1038/s41563-024-01966-1. Epub 2024 Aug 6.
Ion transport is essential to energy storage, cellular signalling and desalination. Polymers have been explored for decades as solid-state electrolytes by either adding salt to polar polymers or tethering ions to the backbone to create less flammable and more robust systems. New design paradigms are needed to advance the performance of solid polymer electrolytes beyond conventional systems. Here the role of a helical secondary structure is shown to greatly enhance the conductivity of solvent-free polymer electrolytes using cationic polypeptides with a mobile anion. Longer helices lead to higher conductivity, and random coil peptides show substantially lower conductivity. The macrodipole of the helix increases with peptide length, leading to larger dielectric constants. The hydrogen bonding of the helix also imparts thermal and electrochemical stability, while allowing for facile dissolution back to monomer in acid. Peptide polymer electrolytes present a promising platform for the design of next-generation ion-transporting materials.
离子输运对于能量存储、细胞信号传递和海水淡化至关重要。几十年来,人们一直在探索聚合物作为固态电解质,方法是在极性聚合物中添加盐,或通过将离子键接到主链上来构建不易燃且更坚固的系统。需要新的设计范式来提高固态聚合物电解质的性能,超越传统系统。本研究表明,使用带有可移动阴离子的阳离子多肽,螺旋状二级结构在提高无溶剂聚合物电解质的电导率方面具有重要作用。较长的螺旋结构导致更高的电导率,而无规卷曲肽的电导率则显著降低。螺旋的宏观偶极矩随肽长度的增加而增加,导致介电常数增大。螺旋的氢键还赋予其热和电化学稳定性,同时允许在酸中容易地溶解回单体。肽聚合物电解质为设计下一代离子传输材料提供了一个很有前途的平台。