Casotto Andrea, Drera Giovanni, Perilli Daniele, Freddi Sonia, Pagliara Stefania, Zanotti Michele, Schio Luca, Verdini Alberto, Floreano Luca, Di Valentin Cristiana, Sangaletti Luigi
I-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia, Italy.
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
Nanoscale. 2022 Sep 22;14(36):13166-13177. doi: 10.1039/d2nr02647c.
With the aim to identify charge transfer channels underlying device development and operation, X-Ray Photoelectron Spectroscopy (XPS), Near-Edge X-Ray Absorption Fine Structure (NEXAFS), and Resonant Photoelectron Spectroscopy (ResPES) have been employed to characterize a novel heterointerface obtained by the controlled evaporation of a Nickel Phthalocyanine (NiPc) monolayer on a single layer of Graphene (Gr) on SiC substrate. Indeed, the Gr-NiPc interface could be a promising candidate for different applications in the field of photonics, optoelectronics, and sensing, provided that clear information on the charge transfer mechanisms at the Gr-NiPc interface can be obtained. The analysis of the spectroscopic data has shown the effective functionalization and the horizontally-flat disposition of the NiPc complexes over the Gr layer. With this geometry, the main intermolecular interaction experienced by the NiPc species is the coupling with the Gr substrate, through π-symmetry orbitals, as revealed by the different behaviour of the valence band photoemission at resonance with the N K-edge and Ni L-edge. These results have been supported by the analysis of density functional theory (DFT) calculations, that allowed for a rationalization of the experimental data, showing that charge transfer at the interface occurs from the doubly degenerate e LUMO orbital, involving mainly N and C (pyrrole ring) p states, to the holes in the p-doped graphene layer.
为了确定器件开发和运行背后的电荷转移通道,采用了X射线光电子能谱(XPS)、近边X射线吸收精细结构(NEXAFS)和共振光电子能谱(ResPES)来表征一种新型异质界面,该异质界面是通过在SiC衬底上的单层石墨烯(Gr)上可控蒸发镍酞菁(NiPc)单层而获得的。事实上,如果能够获得关于Gr-NiPc界面电荷转移机制的清晰信息,那么Gr-NiPc界面可能是光子学、光电子学和传感领域不同应用的一个有前途的候选者。光谱数据分析表明,NiPc配合物在Gr层上实现了有效的功能化和水平平整排列。在这种几何结构下,NiPc物种经历的主要分子间相互作用是通过π对称轨道与Gr衬底耦合,这一点通过价带光发射在与N K边和Ni L边共振时的不同行为得以揭示。这些结果得到了密度泛函理论(DFT)计算分析的支持,该计算能够对实验数据进行合理化解释,表明界面处的电荷转移发生在双重简并的e LUMO轨道,主要涉及N和C(吡咯环)的p态,转移到p型掺杂石墨烯层的空穴上。