Perilli Daniele, Rizzi Alberto Maria, Di Valentin Cristiana
Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy.
Nanomaterials (Basel). 2025 May 3;15(9):691. doi: 10.3390/nano15090691.
Developing novel gas-sensing materials is critical for overcoming the limitations of current metal oxide semiconductor technologies, which, despite their widely commercial use, require high operating temperatures to achieve optimal performance. In this context, integrating graphene with molecular organic layers provides a promising platform for next-generation gas-sensing materials. In this work, we systematically explore the gas-sensing properties of metal phthalocyanine/graphene (MPc/Gr) interfaces using density functional theory calculations. Specifically, we examine the role of different MPcs (FePc, CoPc, NiPc, and CuPc) and Gr doping levels (p-doped, neutral, and n-doped) in the detection of NH and NO molecules, used as representative electron-donor and -acceptor testing gases, respectively. Our results reveal that a p-doped Gr is necessary for NH detection, while the choice of metal cation plays a crucial role in determining sensitivity, following the trend FePc/Gr > CoPc/Gr > NiPc/Gr, with CuPc/Gr exhibiting no response. Remarkably, FePc/Gr demonstrates sensitivity down to the limit of a single NH molecule per FePc. Conversely, NO detection is possible under both neutral and n-doped Gr, with the strongest response observed for n-doped FePc/Gr and CoPc/Gr. Crucially, we identify the d orbital of the MPc as a key factor in mediating charge transfer between the gas molecule and Gr, governing the electronic interactions that drive the sensing response. These insights provide valuable guidelines for the rational design of high-sensitivity graphene-based gas sensors.
开发新型气敏材料对于克服当前金属氧化物半导体技术的局限性至关重要,尽管这些技术已广泛商业化应用,但仍需要高温操作才能实现最佳性能。在此背景下,将石墨烯与分子有机层相结合为下一代气敏材料提供了一个有前景的平台。在这项工作中,我们使用密度泛函理论计算系统地探索了金属酞菁/石墨烯(MPc/Gr)界面的气敏特性。具体而言,我们研究了不同的MPc(FePc、CoPc、NiPc和CuPc)以及Gr掺杂水平(p型掺杂、中性和n型掺杂)在检测NH和NO分子时所起的作用,这两种分子分别用作代表性的电子供体和受体测试气体。我们的结果表明,p型掺杂的Gr对于NH检测是必要的,而金属阳离子的选择在决定灵敏度方面起着关键作用,遵循FePc/Gr > CoPc/Gr > NiPc/Gr的趋势,其中CuPc/Gr无响应。值得注意的是,FePc/Gr对单个NH分子的检测灵敏度可达极限。相反,在中性和n型掺杂的Gr下都可以检测NO,n型掺杂的FePc/Gr和CoPc/Gr的响应最强。至关重要的是,我们确定MPc的d轨道是介导气体分子与Gr之间电荷转移的关键因素,它控制着驱动传感响应的电子相互作用。这些见解为基于石墨烯的高灵敏度气体传感器的合理设计提供了有价值的指导。