Suppr超能文献

评估和增强设计蛋白质的折叠能力。

Assessing and enhancing foldability in designed proteins.

机构信息

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Protein Sci. 2022 Sep;31(9):e4400. doi: 10.1002/pro.4400.

Abstract

Recent advances in protein-design methodology have led to a dramatic increase in reliability and scale. With these advances, dozens and even thousands of designed proteins are automatically generated and screened. Nevertheless, the success rate, particularly in design of functional proteins, is low and fundamental goals such as reliable de novo design of efficient enzymes remain beyond reach. Experimental analyses have consistently indicated that a major reason for design failure is inaccuracy and misfolding relative to the design conception. To address this challenge, we describe complementary methods to diagnose and ameliorate suboptimal regions in designed proteins: first, we develop a Rosetta atomistic computational mutation scanning approach to detect energetically suboptimal positions in designs (available on a web server https://pSUFER.weizmann.ac.il); second, we demonstrate that AlphaFold2 ab initio structure prediction flags regions that may misfold in designed enzymes and binders; and third, we focus FuncLib design calculations on suboptimal positions in a previously designed low-efficiency enzyme, improving its catalytic efficiency by 330-fold. Furthermore, applied to a de novo designed protein that exhibited limited stability, the same approach markedly improved stability and expressibility. Thus, foldability analysis and enhancement may dramatically increase the success rate in design of functional proteins.

摘要

近年来,蛋白质设计方法学的进展使得可靠性和规模都得到了显著提高。有了这些进展,数十种甚至数千种设计的蛋白质可以自动生成和筛选。尽管如此,成功率仍然很低,特别是在功能性蛋白质的设计方面,可靠的从头设计高效酶等基本目标仍然难以实现。实验分析一直表明,设计失败的一个主要原因是与设计概念相比存在不准确和错误折叠。为了解决这一挑战,我们描述了互补的方法来诊断和改善设计蛋白质中的次优区域:首先,我们开发了一种 Rosetta 原子计算突变扫描方法来检测设计中能量上次优的位置(可在网页服务器 https://pSUFER.weizmann.ac.il 上获得);其次,我们证明 AlphaFold2 从头预测结构可以标记设计酶和配体中可能错误折叠的区域;第三,我们将 FuncLib 设计计算集中在以前设计的低效率酶的次优位置上,将其催化效率提高了 330 倍。此外,该方法应用于一种表现出有限稳定性的从头设计蛋白质,显著提高了其稳定性和表达能力。因此,折叠分析和增强可以显著提高功能性蛋白质设计的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17c9/9375437/b5f98277c5ac/PRO-31-e4400-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验