Suppr超能文献

人工智能与内镜医师在早期胃癌浸润深度诊断中的合作。

Cooperation between artificial intelligence and endoscopists for diagnosing invasion depth of early gastric cancer.

机构信息

Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.

Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.

出版信息

Gastric Cancer. 2023 Jan;26(1):116-122. doi: 10.1007/s10120-022-01330-9. Epub 2022 Aug 30.

Abstract

BACKGROUND AND STUDY AIMS

The diagnostic ability of endoscopists to determine invasion depth of early gastric cancer is not favorable. We designed an artificial intelligence (AI) classifier for differentiating intramucosal and submucosal gastric cancers and examined it to establish a diagnostic method based on cooperation between AI and endoscopists.

PATIENTS AND METHODS

We prepared 500 training images using cases of mainly depressed-type early gastric cancer from 250 intramucosal cancers and 250 submucosal cancers. We also prepared 200 test images each of 100 cancers from another institution. We designed an AI classifier to differentiate between intramucosal and submucosal cancers by deep learning. We examined the performance of the AI classifier and the majority vote of the endoscopists as high confidence and low confidence diagnostic probability, respectively, and cooperatively combined them to establish a diagnostic method providing high accuracy.

RESULTS

Internal evaluation of the training images showed that accuracy, sensitivity, specificity, and F1 measure by the AI classifier were 77%, 76%, 78%, and 0.768, and those of the majority vote of the endoscopists were 72.6%, 53.6%, 91.6%, and 0.662, respectively. A diagnostic method based on cooperation between AI and the endoscopists showed that the respective values were 78.0%, 76.0%, 80.0%, and 0.776 for the test images. The value of F1 measure was especially higher than those by AI or the endoscopists alone.

CONCLUSIONS

Cooperation between AI and endoscopists improved the diagnostic ability to determine invasion depth of early gastric cancer.

摘要

背景与研究目的

内镜医师判断早期胃癌浸润深度的能力并不理想。我们设计了一种人工智能(AI)分类器,用于区分黏膜内和黏膜下胃癌,并对其进行检验,以建立一种基于 AI 和内镜医师合作的诊断方法。

患者与方法

我们使用来自 250 例黏膜内癌和 250 例黏膜下癌的主要凹陷型早期胃癌病例,准备了 500 张训练图像。我们还分别准备了来自另一家机构的 100 例癌症的 200 张测试图像。我们设计了一种 AI 分类器,通过深度学习来区分黏膜内和黏膜下癌症。我们检验了 AI 分类器的性能和内镜医师的多数票(分别作为高置信度和低置信度诊断概率)的表现,并合作结合它们以建立提供高准确性的诊断方法。

结果

对训练图像的内部评估显示,AI 分类器的准确性、敏感度、特异度和 F1 度量分别为 77%、76%、78%和 0.768,内镜医师多数票的分别为 72.6%、53.6%、91.6%和 0.662。基于 AI 和内镜医师合作的诊断方法在测试图像上的各自值分别为 78.0%、76.0%、80.0%和 0.776。F1 度量值尤其高于 AI 或内镜医师单独使用的值。

结论

AI 和内镜医师的合作提高了判断早期胃癌浸润深度的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b784/9813068/4519d4e5936d/10120_2022_1330_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验