Boquet-Pujadas Aleix, Olivo-Marin Jean-Christophe
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):6125-6141. doi: 10.1109/TPAMI.2022.3202855. Epub 2023 Apr 3.
From meteorology to medical imaging and cell mechanics, many scientific domains use inverse problems (IPs) to extract physical measurements from image movement. To this end, motion estimation methods such as optical flow (OF) pre-process images into motion data to feed the IP, which then inverts for the measurements through a physical model. However, this combined OFIP pipeline exacerbates the ill-posedness inherent to each technique, propagating errors and preventing uncertainty quantification. We introduce a Bayesian PDE-constrained framework that transforms visual information directly into physical measurements in the context of probability distributions. The posterior mean is a constrained IP that tracks brightness while satisfying the physical model, thereby translating the aperture problem from the motion to the underlying physics; whereas the posterior covariance derives measurement error out of image noise. As we illustrate with traction force microscopy, our approach offers several advantages: more accurate reconstructions; unprecedented flexibility in experiment design (e.g., arbitrary boundary conditions); and the exclusivity of measurement error, central to empirical science, yet still unavailable under the OFIP strategy.
从气象学到医学成像和细胞力学,许多科学领域都使用逆问题(IP)从图像运动中提取物理测量值。为此,诸如光流(OF)之类的运动估计方法将图像预处理为运动数据,以输入到逆问题中,然后逆问题通过物理模型反演来获取测量值。然而,这种结合了光流和逆问题的流程加剧了每种技术固有的不适定性,传播了误差并阻碍了不确定性量化。我们引入了一个贝叶斯偏微分方程约束框架,该框架在概率分布的背景下将视觉信息直接转换为物理测量值。后验均值是一个受约束的逆问题,它在满足物理模型的同时跟踪亮度,从而将孔径问题从运动转换为潜在的物理问题;而后验协方差则从图像噪声中导出测量误差。正如我们在牵引力显微镜实验中所展示的那样,我们的方法具有几个优点:重建更准确;实验设计具有前所未有的灵活性(例如,任意边界条件);以及测量误差的排他性,这是经验科学的核心,但在光流和逆问题策略下仍然无法实现。