Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
Plant Physiol Biochem. 2022 Oct 15;189:35-45. doi: 10.1016/j.plaphy.2022.07.029. Epub 2022 Aug 2.
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
mRNA 翻译成蛋白质是一个普遍的过程,核糖体是执行该过程的分子机制。在真核细胞中,核糖体可以存在于细胞质、线粒体,以及光合生物的叶绿体中。已经进行了许多遗传研究来确定质体核糖体蛋白(PRP)的功能。烟草经常被用作研究叶绿体基因组编码的核糖体蛋白的系统。相比之下,拟南芥和水稻则优先使用直接或反向遗传学方法来研究核编码 PRP 的功能。这些工作的结果提供了一个相对全面的目录,其中突出了一些 PRP 是必需的,而其他则不是。后者参与叶绿体生物发生、侧根形成、叶片形态发生、植物生长、光合作用或叶绿素合成。此外,一些小基因家族编码一些 PRP。在过去几年中,越来越多的发现表明 PRP 与对不利环境条件的耐受性之间存在密切关联。有时,相同的 PRP 可以同时参与发育过程和对非生物胁迫的反应。本综述的目的是编译和更新迄今为止关于 PRP 功能分析的研究结果。研究来自不同物种的 PRP 破坏引起的表型效应揭示了 PRP 参与不同生物学过程的情况,并强调了质体翻译对植物生物学的重要影响。